自定义模型&训练

文章目录

  • 自定义模型&训练
    • 1. Define the Model
    • 2. Define Optimizer and Loss
    • 3. Evaluate Untrained Model
    • 4. Define Metrics
    • 5. Apply Gradients
    • 6. Train Loop
    • 7. Validation Loop
    • 8. Main loop

自定义模型&训练

  在一些场景下,使用tensorflow默认的训练过程无法满足我们的需求,故需要自定义模型训练,以下是自定义模型及其训练的全过程。

1. Define the Model

def base_model():
    inputs = tf.keras.layers.Input(shape=(len(train.columns)))

    x = tf.keras.layers.Dense(128, activation='relu')(inputs)
    x = tf.keras.layers.Dense(64, activation='relu')(x)
    outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    return model

model = base_model()

2. Define Optimizer and Loss

optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001)
loss_object = tf.keras.losses.BinaryCrossentropy()

3. Evaluate Untrained Model

outputs = model(norm_test_X.values)
loss_value = loss_object(y_true=test_Y.values, y_pred=outputs)
print("Loss before training %.4f" % loss_value.numpy())

4. Define Metrics

class F1Score(tf.keras.metrics.Metric):

    def __init__(self, name='f1_score', **kwargs):
        super(F1Score, self).__init__(name=name, **kwargs)

        self.tp = tf.Variable(0, dtype = 'int32')
        self.fp = tf.Variable(0, dtype = 'int32')
        self.tn = tf.Variable(0, dtype = 'int32')
        self.fn = tf.Variable(0, dtype = 'int32')

    def update_state(self, y_true, y_pred, sample_weight=None):
        conf_matrix = tf.math.confusion_matrix(y_true, y_pred, num_classes=2)
        
        self.tn.assign_add(conf_matrix[0][0])
        self.tp.assign_add(conf_matrix[1][1])
        self.fp.assign_add(conf_matrix[0][1])
        self.fn.assign_add(conf_matrix[1][0])

    def result(self):
        if (self.tp + self.fp == 0):
            precision = 1.0
        else:
            precision = self.tp / (self.tp + self.fp)
      
        if (self.tp + self.fn == 0):
            recall = 1.0
        else:
            recall = self.tp / (self.tp + self.fn)

        # 返回 F1 Score
        f1_score = 2 * ((precision * recall)/(precision + recall))
        
        return f1_score

    def reset_states(self):
        self.tp.assign(0)
        self.tn.assign(0) 
        self.fp.assign(0)
        self.fn.assign(0)


train_f1score_metric = F1Score()
val_f1score_metric = F1Score()

train_acc_metric = tf.keras.metrics.BinaryAccuracy()
val_acc_metric = tf.keras.metrics.BinaryAccuracy()

5. Apply Gradients

def apply_gradient(optimizer, loss_object, model, x, y):
  
    with tf.GradientTape() as tape:
        logits = model(x)
        loss_value = loss_object(y_true=y, y_pred=logits)
  
    gradients = tape.gradient(loss_value, model.trainable_weights)
    optimizer.apply_gradients(zip(gradients, model.trainable_weights))
  
    return logits, loss_value

6. Train Loop

def train_data_for_one_epoch(train_dataset, optimizer, loss_object, model, 
                             train_acc_metric, train_f1score_metric, verbose=True):
    losses = []

    # 遍历所有训练数据
    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):

        # 模型计算的预测值
        logits, loss_value = apply_gradient(optimizer, loss_object, model, x_batch_train, y_batch_train)
        losses.append(loss_value)

		# 格式化
        logits = tf.round(logits)
        logits = tf.cast(logits, 'int64')

        # 更新training metrics
        train_acc_metric.update_state(y_batch_train, logits)
        train_f1score_metric.update_state(y_batch_train, logits)

        # 更新进度
        if verbose:
            print("Training loss for step %s: %.4f" % (int(step), float(loss_value)))
    
    return losses

7. Validation Loop

def perform_validation():
    losses = []

    # 遍历所有validation data.
    for x_val, y_val in test_dataset:

        # 计算validation的预测值及loss
        val_logits = model(x_val) 
        val_loss = loss_object(y_true=y_val, y_pred=val_logits)
        losses.append(val_loss)

        # 格式化
        val_logits = tf.cast(tf.round(model(x_val)), 'int64')

        # 更新validation metrics
        val_acc_metric.update_state(y_val, val_logits)
        val_f1score_metric.update_state(y_val, val_logits)
        
    return losses

8. Main loop

# 循环epochs次
epochs = 5
epochs_val_losses, epochs_train_losses = [], []

for epoch in range(epochs):
    print('Start of epoch %d' % (epoch,))
    # 执行Train Loop
    losses_train = train_data_for_one_epoch(train_dataset, optimizer, loss_object, model, train_acc_metric, train_f1score_metric)

    # 获取训练结果
    train_acc = train_acc_metric.result()
    train_f1score = train_f1score_metric.result()

    # 执行Validation Loop
    losses_val = perform_validation()

    # 获取Validation结果
    val_acc = val_acc_metric.result()
    val_f1score = val_f1score_metric.result()

    # 计算train和validation的loss
    losses_train_mean = np.mean(losses_train)
    losses_val_mean = np.mean(losses_val)
    epochs_val_losses.append(losses_val_mean)
    epochs_train_losses.append(losses_train_mean)

    print('\n Epcoh %s: Train loss: %.4f  Validation Loss: %.4f, Train Accuracy: %.4f, Validation Accuracy %.4f, Train F1 Score: %.4f, Validation F1 Score: %.4f' % (epoch, float(losses_train_mean), float(losses_val_mean), float(train_acc), float(val_acc), train_f1score, val_f1score))

    # 重置metrics
    train_acc_metric.reset_states()
    val_acc_metric.reset_states()
    val_f1score_metric.reset_states()
    train_f1score_metric.reset_states()

你可能感兴趣的:(机器学习/深度学习,深度学习,python,机器学习)