【计算方法】正交区域查询---KD-Tree概念

   

【计算方法】正交区域查询---KD-Tree概念_第1张图片

一、说明

        kd 树是一种二叉树数据结构,可以用来进行高效的 kNN 计算。kd 树算法偏于复杂,本篇将先介绍以二叉树的形式来记录和索引空间的思路,以便读者更轻松地理解 kd 树。

二、正交区域查找

2.1 定义

        对于k维空间的张量数据表格,如果需要找出超立方体的区域内部数据的查找方法。之所以称之为正交区域查找,是因为在k维张量中,属性维度的空间相互无关。
        而许多信息的查询是可以转化为正交区域查找的,例如问一堆员工中,年龄在[a,b],工资在[l,r]中的有几个,家庭人数为【n,m】。这个有很多做法,什么树套树之类的。而一种思路是,把员工的年龄x、工资y、家庭成员z,映射到三维平面上的点(x,y,z)上,这样就可以进行正交区域查找了,即查找一个矩形中点的个数。

【计算方法】正交区域查询---KD-Tree概念_第2张图片


        对于更高维查询,我们需要一个数据结构,该结构可以在任何维数下使用 。* 注意:如果用树嵌套查询不足以构成各维度对等模型,因此,二叉树的迭代查询是不可取的。

 2.2 引进KD树

        先解释一下名字,K是维数,D是Dimension,即维。“树”表明他是树的结构。基本地,KD树中一个节点储存了:

  • K维空间域,(例如三维中的一个长方体),
  • 一个K维点的坐标
  • 两个儿子下标

        在平衡树中,我们知道:可以维护以每个节点为根的子树权值的min和max。
        如法泡制,K维空间域与此很类似,维护的是子树点的坐标范围。

const int K=3;
struct KD_Tree
{
    int d[K],son[2];
    int x[2],y[2],z[2]     ;//Range[K][2];
} tr[N];

        如上代码,P为节点储存的原图的点坐标,son为儿子,第二行储存了K维空间域。

2.3 构造Kd树

基本思想:

  • KD树是一颗平衡二叉树,其中每个非叶节点,可以想象一个超平面,用来分割其储存的空间域,其中超平面垂直于坐标轴。
  • 树尽量平衡,超平面划分的两个空间内的点尽量一样多。
  • 为了有扩展性,树的每一层的超平面垂直的坐标轴,要轮流来取。即第一层垂直x轴,第二层垂直y轴,第三层垂直z轴····

        垂直某个轴,意味着以这个轴的坐标为关键字来操作。
        例如这次要垂直x轴,我们取当前点集的x坐标的中位数,然后把它作为切分点,切分点作为父节点,即KD树中新节点储存的点;切开的两边的点分别属于左右子树的点集。

2.4 二维的例子说明原理

1)有二维点如下图:

【计算方法】正交区域查询---KD-Tree概念_第3张图片

 2)建立2d的平衡树x轴节点

        在x轴上找二分线l1

【计算方法】正交区域查询---KD-Tree概念_第4张图片

3)建立2d的平衡树y轴节点

深度优先算法:

  • 在x的l1线的左侧找到y轴上的二分线l2

【计算方法】正交区域查询---KD-Tree概念_第5张图片

  • 在l1和l2包含区域找x的二分线l4

 【计算方法】正交区域查询---KD-Tree概念_第6张图片

 【计算方法】正交区域查询---KD-Tree概念_第7张图片

 【计算方法】正交区域查询---KD-Tree概念_第8张图片

 【计算方法】正交区域查询---KD-Tree概念_第9张图片

完成图:

 【计算方法】正交区域查询---KD-Tree概念_第10张图片

三、三维度示例研究

3.1 假如下面例子

这是一个例子:血型、血小板数、血压三个指标。就按照x,y,z交替选中进行二叉树构建。

3.2 构建示例代码(python)

下面给出构造代码

class KDTree(object):
    
    """
    A super short KD-Tree for points...
    so concise that you can copypasta into your homework 
    without arousing suspicion.
    This implementation only supports Euclidean distance. 
    The points can be any array-like type, e.g: 
        lists, tuples, numpy arrays.
    Usage:
    1. Make the KD-Tree:
        `kd_tree = KDTree(points, dim)`
    2. You can then use `get_knn` for k nearest neighbors or 
       `get_nearest` for the nearest neighbor
    points are be a list of points: [[0, 1, 2], [12.3, 4.5, 2.3], ...]
    """
    def __init__(self, points, dim, dist_sq_func=None):
        """Makes the KD-Tree for fast lookup.
        Parameters
        ----------
        points : list
            A list of points.
        dim : int 
            The dimension of the points. 
        dist_sq_func : function(point, point), optional
            A function that returns the squared Euclidean distance
            between the two points. 
            If omitted, it uses the default implementation.
        """

        if dist_sq_func is None:
            dist_sq_func = lambda a, b: sum((x - b[i]) ** 2 
                for i, x in enumerate(a))
                
        def make(points, i=0):
            if len(points) > 1:
                points.sort(key=lambda x: x[i])
                i = (i + 1) % dim
                m = len(points) >> 1
                return [make(points[:m], i), make(points[m + 1:], i), 
                    points[m]]
            if len(points) == 1:
                return [None, None, points[0]]
        
        def add_point(node, point, i=0):
            if node is not None:
                dx = node[2][i] - point[i]
                for j, c in ((0, dx >= 0), (1, dx < 0)):
                    if c and node[j] is None:
                        node[j] = [None, None, point]
                    elif c:
                        add_point(node[j], point, (i + 1) % dim)

        import heapq
        def get_knn(node, point, k, return_dist_sq, heap, i=0, tiebreaker=1):
            if node is not None:
                dist_sq = dist_sq_func(point, node[2])
                dx = node[2][i] - point[i]
                if len(heap) < k:
                    heapq.heappush(heap, (-dist_sq, tiebreaker, node[2]))
                elif dist_sq < -heap[0][0]:
                    heapq.heappushpop(heap, (-dist_sq, tiebreaker, node[2]))
                i = (i + 1) % dim
                # Goes into the left branch, then the right branch if needed
                for b in (dx < 0, dx >= 0)[:1 + (dx * dx < -heap[0][0])]:
                    get_knn(node[b], point, k, return_dist_sq, 
                        heap, i, (tiebreaker << 1) | b)
            if tiebreaker == 1:
                return [(-h[0], h[2]) if return_dist_sq else h[2] 
                    for h in sorted(heap)][::-1]

        def walk(node):
            if node is not None:
                for j in 0, 1:
                    for x in walk(node[j]):
                        yield x
                yield node[2]

        self._add_point = add_point
        self._get_knn = get_knn 
        self._root = make(points)
        self._walk = walk

    def __iter__(self):
        return self._walk(self._root)
        
    def add_point(self, point):
        """Adds a point to the kd-tree.
        
        Parameters
        ----------
        point : array-like
            The point.
        """
        if self._root is None:
            self._root = [None, None, point]
        else:
            self._add_point(self._root, point)

    def get_knn(self, point, k, return_dist_sq=True):
        """Returns k nearest neighbors.
        Parameters
        ----------
        point : array-like
            The point.
        k: int 
            The number of nearest neighbors.
        return_dist_sq : boolean
            Whether to return the squared Euclidean distances.
        Returns
        -------
        list
            The nearest neighbors. 
            If `return_dist_sq` is true, the return will be:
                [(dist_sq, point), ...]
            else:
                [point, ...]
        """
        return self._get_knn(self._root, point, k, return_dist_sq, [])

    def get_nearest(self, point, return_dist_sq=True):
        """Returns the nearest neighbor.
        Parameters
        ----------
        point : array-like
            The point.
        return_dist_sq : boolean
            Whether to return the squared Euclidean distance.
        Returns
        -------
        array-like
            The nearest neighbor. 
            If the tree is empty, returns `None`.
            If `return_dist_sq` is true, the return will be:
                (dist_sq, point)
            else:
                point
        """
        l = self._get_knn(self._root, point, 1, return_dist_sq, [])
        return l[0] if len(l) else None

下面给出测试代码 

import unittest
import random
import cProfile
from kd_tree import *

class KDTreeUnitTest(unittest.TestCase):

    def test_all(self):

        dim = 3

        def dist_sq_func(a, b):
            return sum((x - b[i]) ** 2 for i, x in enumerate(a))

        def get_knn_naive(points, point, k, return_dist_sq=True):
            neighbors = []
            for i, pp in enumerate(points):
                dist_sq = dist_sq_func(point, pp)
                neighbors.append((dist_sq, pp))
            neighbors = sorted(neighbors)[:k]
            return neighbors if return_dist_sq else [n[1] for n in neighbors]

        def get_nearest_naive(points, point, return_dist_sq=True):
            nearest = min(points, key=lambda p:dist_sq_func(p, point))
            if return_dist_sq:
                return (dist_sq_func(nearest, point), nearest) 
            return nearest

        def rand_point(dim):
            return [random.uniform(-1, 1) for d in range(dim)]

        points = [rand_point(dim) for x in range(10000)]
        additional_points = [rand_point(dim) for x in range(100)]
        query_points = [rand_point(dim) for x in range(100)]

        kd_tree_results = []
        naive_results = []
        
        global test_and_bench_kd_tree
        global test_and_bench_naive

        def test_and_bench_kd_tree():
            global kd_tree
            kd_tree = KDTree(points, dim)
            for point in additional_points:
                kd_tree.add_point(point)
            kd_tree_results.append(tuple(kd_tree.get_knn([0] * dim, 8)))
            for t in query_points:
                kd_tree_results.append(tuple(kd_tree.get_knn(t, 8)))
            for t in query_points:
                kd_tree_results.append(tuple(kd_tree.get_nearest(t)))

        def test_and_bench_naive():
            all_points = points + additional_points
            naive_results.append(tuple(get_knn_naive(all_points, [0] * dim, 8)))
            for t in query_points:
                naive_results.append(tuple(get_knn_naive(all_points, t, 8)))
            for t in query_points:
                naive_results.append(tuple(get_nearest_naive(all_points, t)))

        print("Running KDTree...")
        cProfile.run("test_and_bench_kd_tree()")
        
        print("Running naive version...")
        cProfile.run("test_and_bench_naive()")

        print("Query results same as naive version?: {}"
            .format(kd_tree_results == naive_results))
        
        self.assertEqual(kd_tree_results, naive_results, 
            "Query results mismatch")
        
        self.assertEqual(len(list(kd_tree)), len(points) + len(additional_points), 
            "Number of points from iterator mismatch")

if __name__ == '__main__':
    unittest.main()

参考文章:

GitHub - Vectorized/Python-KD-Tree: A simple and fast KD-tree for points in Python for kNN or nearest points. (damm short at just ~60 lines) No libraries needed.

你可能感兴趣的:(计算方法,数据结构,算法)