二叉树[堆](TOP-K)

二叉树[堆](TOP-K)_第1张图片

二叉树

  • 1.树概念及结构
    • 1.1树的概念
    • 1.2 树的相关概念
    • 1.3 树的表示
    • 1.4 树在实际中的运用(表示文件系统的目录树结构)
  • 2.二叉树概念及结构
    • 2.1概念
    • 2.2现实中的二叉树:
    • 2.3 特殊的二叉树:
    • 2.4 二叉树的性质
    • 2.5 二叉树的存储结构
  • 3.二叉树顺序结构及实现
    • 3.1 二叉树的顺序结构
    • 3.2 堆的概念及结构
    • 3.3 堆的实现
      • 3.2.1 堆向下调整算法
      • 3.2.2堆的创建
      • 3.2.3 建堆时间复杂度
      • 3.2.4 堆的插入
      • 3.2.5 堆的删除
      • 3.2.6 堆的代码实现
    • 3.4 堆的应用
      • 3.4.1 堆排序
      • 3.24.2 TOP-K问题
  • 4.二叉树链式结构及实现
  • 4.1二叉树的遍历
    • 4.1.1 前序、中序以及后序遍历
      • 4.2.2 层序遍历
  • 5.结语

1.树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

  • 有一个特殊的结点,称为根结点,根结点没有前驱结点
  • 除根结点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。
    二叉树[堆](TOP-K)_第2张图片
    二叉树[堆](TOP-K)_第3张图片

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 树的相关概念

二叉树[堆](TOP-K)_第4张图片
结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G…等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* firstChild1;    // 第一个孩子结点
 struct Node* pNextBrother;   // 指向其下一个兄弟结点
 DataType data;               // 结点中的数据域
};

二叉树[堆](TOP-K)_第5张图片

1.4 树在实际中的运用(表示文件系统的目录树结构)

二叉树[堆](TOP-K)_第6张图片

2.二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根结点加上两棵别称为左子树和右子树的二叉树组成
    二叉树[堆](TOP-K)_第7张图片
    从上图可以看出:
  3. 二叉树不存在度大于2的结点
  4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    注意:对于任意的二叉树都是由以下几种情况复合而成的:
    二叉树[堆](TOP-K)_第8张图片

2.2现实中的二叉树:

二叉树[堆](TOP-K)_第9张图片
二叉树[堆](TOP-K)_第10张图片

2.3 特殊的二叉树:

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 k − 1 2^k -1 2k1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    二叉树[堆](TOP-K)_第11张图片

2.4 二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2 ( i − 1 ) 2^{(i-1)} 2(i1) 个结点.
  2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是 2 h − 1 2^h-1 2h1.
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n 0 n_0 n0, 度为2的分支结点个数为 n 2 n_2 n2,则有 n 0 n_0 n0 n 2 n_2 n2+1
  4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度h= l o g 2 ( n + 1 ) log_2(n+1) log2(n+1). (ps: l o g 2 ( n + 1 ) log_2(n+1) log2(n+1)是log以2为底,n+1为对数)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:
  1. 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
  2. 若2i+1=n否则无左孩子
  3. 若2i+2=n否则无右孩子

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
二叉树[堆](TOP-K)_第12张图片

2.链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。
二叉树[堆](TOP-K)_第13张图片

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* left;   // 指向当前结点左孩子
    struct BinTreeNode* right;  // 指向当前结点右孩子
    BTDataType data;            // 当前结点值域
}

// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* parent; // 指向当前结点的双亲
    struct BinTreeNode* left;   // 指向当前结点左孩子
    struct BinTreeNode* right;  // 指向当前结点右孩子
    BTDataType data;            // 当前结点值域
};

3.二叉树顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
二叉树[堆](TOP-K)_第14张图片

3.2 堆的概念及结构

如果有一个关键码的集合K = { k 0 k_0 k0 k 1 k_1 k1 k 2 k_2 k2,…, k n − 1 k_{n-1} kn1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足: K i K_i Ki <= K 2 ∗ i + 1 K_{2*i+1} K2i+1 K i K_i Ki<= K 2 ∗ i + 2 K_{2*i+2} K2i+2 ( K i K_i Ki >= K 2 ∗ i + 1 K_{2*i+1} K2i+1 K i K_i Ki >= K 2 ∗ i + 2 K_{2*i+2} K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。
堆的性质:

  • 堆中某个结点的值总是不大于或不小于其父结点的值;
  • 堆总是一棵完全二叉树。
    二叉树[堆](TOP-K)_第15张图片

3.3 堆的实现

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array[] = {27,15,19,18,28,34,65,49,25,37};
二叉树[堆](TOP-K)_第16张图片

3.2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。
int a[] = {1,5,3,8,7,6};
二叉树[堆](TOP-K)_第17张图片

3.2.3 建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个结点不影响最终结果):
二叉树[堆](TOP-K)_第18张图片
因此:建堆的时间复杂度为O(N)

3.2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
二叉树[堆](TOP-K)_第19张图片

3.2.5 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
二叉树[堆](TOP-K)_第20张图片

3.2.6 堆的代码实现

gitt代码链接

3.4 堆的应用

3.4.1 堆排序

堆排序gitt代码链接

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
  • 升序:建大堆
  • 降序:建小堆
  1. 利用堆删除思想来进行排序
    建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
    二叉树[堆](TOP-K)_第21张图片

3.24.2 TOP-K问题

TOP-K gitt代码链接

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆
  1. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
    将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

4.二叉树链式结构及实现

4.1二叉树的遍历

4.1.1 前序、中序以及后序遍历

二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的结点进行相应的操作,并且每个结点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
二叉树[堆](TOP-K)_第22张图片

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
    由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

前序遍历递归图解
二叉树[堆](TOP-K)_第23张图片
二叉树[堆](TOP-K)_第24张图片

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 2 5 6 4 1

4.2.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根结点所在层数为1,层序遍历就是从所在二叉树的根结点出发,首先访问第一层的树根结点,然后从左到右访问第2层上的结点,接着是第三层的结点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
二叉树[堆](TOP-K)_第25张图片

5.结语

到这里这篇博客已经结束啦。
这份博客如果对你有帮助,给博主一个免费的点赞以示鼓励欢迎各位点赞评论收藏⭐️,谢谢!!!
如果有什么疑问或不同的见解,欢迎评论区留言欧

你可能感兴趣的:(数据结构,算法,数据结构)