LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法

      • 环检测算法(DFS)
        • [207. 课程表](https://leetcode.cn/problems/course-schedule/)
      • 拓扑排序算法(DFS)
        • [210. 课程表 II](https://leetcode.cn/problems/course-schedule-ii/)
      • 环检测算法(BFS)
      • 拓扑排序算法(BFS)

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计6510字,阅读大概需要3分钟
更多学习内容, 欢迎关注【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/

环检测算法(DFS)

207. 课程表

你这个学期必须选修 numCourses 门课程,记为 0numCourses - 1

在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai必须 先学习课程 bi

  • 例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1

请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false

首先想到的就是把问题转化成「有向图」这种数据结构,只要图中存在环,那就说明存在循环依赖

class Solution {
    // 记录一次递归堆栈中的节点
    boolean[] onPath;
    // 记录遍历过的节点,防止走回头路
    boolean[] visited;
    // 记录图中是否有环
    boolean hasCycle = false;

    public boolean canFinish(int numCourses, int[][] prerequisites) {
        List<Integer>[] graph = buildGraph(numCourses, prerequisites);
        
        visited = new boolean[numCourses];
        onPath = new boolean[numCourses];
        
        for (int i = 0; i < numCourses; i++) {
            // 遍历图中的所有节点
            traverse(graph, i);
        }
        // 只要没有循环依赖可以完成所有课程
        return !hasCycle;
    }
	
    /** 判断图中是否存在环了  */
    private void traverse(List<Integer>[] graph, int s) {
        if (onPath[s]) {
            // 出现环
            hasCycle = true;
        }
        
        if (visited[s] || hasCycle) {
            // 如果已经找到了环,也不用再遍历了
            return;
        }
        // 前序代码位置
        visited[s] = true;
        onPath[s] = true;
        for (int t : graph[s]) {
            traverse(graph, t);
        }
        // 后序代码位置
        onPath[s] = false;
    }

    /** 建图函数 */
    private List<Integer>[] buildGraph(int numCourses, int[][] prerequisites) {
        // 图中共有 numCourses 个节点
        List<Integer>[] graph = new LinkedList[numCourses];
        for (int i = 0; i < numCourses; i++) {
            graph[i] = new LinkedList<>();
        }
        for (int[] edge : prerequisites) {
            int from = edge[1], to = edge[0];
            // 添加一条从 from 指向 to 的有向边
            // 边的方向是「被依赖」关系,即修完课程 from 才能修课程 to
            graph[from].add(to);
        }
        return graph;
    }
}

拓扑排序算法(DFS)

拓扑排序(Topological Sorting)直观地说就是,让你把一幅图「拉平」,而且这个「拉平」的图里面,所有箭头方向都是一致的,比如上图所有箭头都是朝右的。

很显然,如果一幅有向图中存在环,是无法进行拓扑排序的,因为肯定做不到所有箭头方向一致;反过来,如果一幅图是「有向无环图」,那么一定可以进行拓扑排序。

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法_第1张图片

其实也不难看出来,如果把课程抽象成节点,课程之间的依赖关系抽象成有向边,那么这幅图的拓扑排序结果就是上课顺序

如何进行拓扑排序?

将后序遍历的结果进行反转,就是拓扑排序的结果

210. 课程表 II

现在你总共有 numCourses 门课需要选,记为 0numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai必须 先选修 bi

  • 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1]

返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组

class Solution {
    // 记录后序遍历结果
    List<Integer> postorder = new ArrayList<>();
    // 记录是否存在环
    boolean hasCycle = false;
    boolean[] visited, onPath;

    // 主函数
    public int[] findOrder(int numCourses, int[][] prerequisites) {
        List<Integer>[] graph = buildGraph(numCourses, prerequisites);
        visited = new boolean[numCourses];
        onPath = new boolean[numCourses];
        // 遍历图
        for (int i = 0; i < numCourses; i++) {
            traverse(graph, i);
        }
        // 有环图无法进行拓扑排序
        if (hasCycle) {
            return new int[]{};
        }
        // 逆后序遍历结果即为拓扑排序结果
        Collections.reverse(postorder);
        int[] res = new int[numCourses];
        for (int i = 0; i < numCourses; i++) {
            res[i] = postorder.get(i);
        }
        return res;
    }

    // 图遍历函数
    void traverse(List<Integer>[] graph, int s) {
        if (onPath[s]) {
            // 发现环
            hasCycle = true;
        }
        if (visited[s] || hasCycle) {
            return;
        }
        // 前序遍历位置
        onPath[s] = true;
        visited[s] = true;
        for (int t : graph[s]) {
            traverse(graph, t);
        }
        // 后序遍历位置
        postorder.add(s);
        onPath[s] = false;
    }

    // 建图函数
    List<Integer>[] buildGraph(int numCourses, int[][] prerequisites) {
        // 图中共有 numCourses 个节点
        List<Integer>[] graph = new LinkedList[numCourses];
        for (int i = 0; i < numCourses; i++) {
            graph[i] = new LinkedList<>();
        }
        for (int[] edge : prerequisites) {
            int from = edge[1], to = edge[0];
            // 添加一条从 from 指向 to 的有向边
            // 边的方向是「被依赖」关系,即修完课程 from 才能修课程 to
            graph[from].add(to);
        }
        return graph;
    }        
}

说一下为什么要把后序遍历的结果再反转?网上看到的拓扑排序算法不用对后序遍历结果进行反转,这是为什么呢?

原因是他建图的时候对边的定义和我不同。我建的图中箭头方向是「被依赖」关系,比如节点 1 指向 2,含义是节点 1 被节点 2 依赖,即做完 1 才能去做 2,如果你反过来,把有向边定义为「依赖」关系,那么整幅图中边全部反转,就可以不对后序遍历结果反转。具体来说,就是把我的解法代码中 graph[from].add(to); 改成 graph[to].add(from); 就可以不反转了。

把二叉树理解成一幅有向图,边的方向是由父节点指向子节点

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法_第2张图片

按照我们的定义,边的含义是「被依赖」关系,那么上图的拓扑排序应该首先是节点 1,然后是 2, 3,以此类推

但显然标准的后序遍历结果不满足拓扑排序,而如果把后序遍历结果反转,就是拓扑排序结果了:

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法_第3张图片

环检测算法(BFS)

// 主函数
public boolean canFinish(int numCourses, int[][] prerequisites) {
    // 建图,有向边代表「被依赖」关系
    List<Integer>[] graph = buildGraph(numCourses, prerequisites);
    // 构建入度数组
    int[] indegree = new int[numCourses];
    for (int[] edge : prerequisites) {
        int from = edge[1], to = edge[0];
        // 节点 to 的入度加一
        indegree[to]++;
    }

    // 根据入度初始化队列中的节点
    Queue<Integer> q = new LinkedList<>();
    for (int i = 0; i < numCourses; i++) {
        if (indegree[i] == 0) {
            // 节点 i 没有入度,即没有依赖的节点
            // 可以作为拓扑排序的起点,加入队列
            q.offer(i);
        }
    }

    // 记录遍历的节点个数
    int count = 0;
    // 开始执行 BFS 循环
    while (!q.isEmpty()) {
        // 弹出节点 cur,并将它指向的节点的入度减一
        int cur = q.poll();
        count++;
        for (int next : graph[cur]) {
            indegree[next]--;
            if (indegree[next] == 0) {
                // 如果入度变为 0,说明 next 依赖的节点都已被遍历
                q.offer(next);
            }
        }
    }

    // 如果所有节点都被遍历过,说明不成环
    return count == numCourses;
}


/** 建图函数 */
private List<Integer>[] buildGraph(int numCourses, int[][] prerequisites) {
    // 图中共有 numCourses 个节点
    List<Integer>[] graph = new LinkedList[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graph[i] = new LinkedList<>();
    }
    for (int[] edge : prerequisites) {
        int from = edge[1], to = edge[0];
        // 添加一条从 from 指向 to 的有向边
        // 边的方向是「被依赖」关系,即修完课程 from 才能修课程 to
        graph[from].add(to);
    }
    return graph;
}

总结下这段 BFS 算法的思路:

1、构建邻接表,和之前一样,边的方向表示「被依赖」关系。

2、构建一个 indegree 数组记录每个节点的入度,即 indegree[i] 记录节点 i 的入度。

3、对 BFS 队列进行初始化,将入度为 0 的节点首先装入队列。

4、开始执行 BFS 循环,不断弹出队列中的节点,减少相邻节点的入度,并将入度变为 0 的节点加入队列

5、如果最终所有节点都被遍历过(count 等于节点数),则说明不存在环,反之则说明存在环

所有节点都被遍历过一遍,也就说明图中不存在环。

反过来说,如果按照上述逻辑执行 BFS 算法,存在节点没有被遍历,则说明成环。

比如下面这种情况,队列中最初只有一个入度为 0 的节点:

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法_第4张图片

当弹出这个节点并减小相邻节点的入度之后队列为空,但并没有产生新的入度为 0 的节点加入队列,所以 BFS 算法终止

LeetCode算法小抄 -- 环检测算法 和 拓扑排序算法_第5张图片

你看,如果存在节点没有被遍历,那么说明图中存在环

拓扑排序算法(BFS)

// 主函数
public int[] findOrder(int numCourses, int[][] prerequisites) {
    // 建图,和环检测算法相同
    List<Integer>[] graph = buildGraph(numCourses, prerequisites);
    // 计算入度,和环检测算法相同
    int[] indegree = new int[numCourses];
    for (int[] edge : prerequisites) {
        int from = edge[1], to = edge[0];
        indegree[to]++;
    }

    // 根据入度初始化队列中的节点,和环检测算法相同
    Queue<Integer> q = new LinkedList<>();
    for (int i = 0; i < numCourses; i++) {
        if (indegree[i] == 0) {
            q.offer(i);
        }
    }

    // 记录拓扑排序结果
    int[] res = new int[numCourses];
    // 记录遍历节点的顺序(索引)
    int count = 0;
    // 开始执行 BFS 算法
    while (!q.isEmpty()) {
        int cur = q.poll();
        // 弹出节点的顺序即为拓扑排序结果
        res[count] = cur;
        count++;
        for (int next : graph[cur]) {
            indegree[next]--;
            if (indegree[next] == 0) {
                q.offer(next);
            }
        }
    }

    if (count != numCourses) {
        // 存在环,拓扑排序不存在
        return new int[]{};
    }
    
    return res;
}

/** 建图函数 */
private List<Integer>[] buildGraph(int numCourses, int[][] prerequisites) {
    // 图中共有 numCourses 个节点
    List<Integer>[] graph = new LinkedList[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graph[i] = new LinkedList<>();
    }
    for (int[] edge : prerequisites) {
        int from = edge[1], to = edge[0];
        // 添加一条从 from 指向 to 的有向边
        // 边的方向是「被依赖」关系,即修完课程 from 才能修课程 to
        graph[from].add(to);
    }
    return graph;
}

–end–

你可能感兴趣的:(LeetCode,算法,leetcode,排序算法,图论,数据结构)