pandas

pandas

Pandas内置数据结构

我们知道,构建和处理二维、多维数组是一项繁琐的任务。Pandas 为解决这一问题, 在 ndarray 数组(NumPy 中的数组)的基础上构建出了两种不同的数据结构,分别是 Series(一维数据结构)DataFrame(二维数据结构)

  • Series 是带标签的一维数组,这里的标签可以理解为索引,但这个索引并不局限于整数,它也可以是字符类型,比如 a、b、c 等;
  • DataFrame 是一种表格型数据结构,它既有行标签,又有列标签
数据结构 维度 说明
Series 1 该结构能够存储各种数据类型,比如字符数、整数、浮点数、Python 对象等,Series 用 name 和 index 属性来描述 数据值。Series 是一维数据结构,因此其维数不可以改变。
DataFrame 2 DataFrame 是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。 在创建该结构时,可以指定相应的索引值。

Series结构

Series 结构,也称 Series 序列,是 Pandas 常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值(value)和一组标签组成,其中标签与数据值之间是一一对应的关系。

Series 可以保存任何数据类型,比如整数、字符串、浮点数、Python 对象等,它的标签默认为整数,从 0 开始依次递增。

通过标签我们可以更加直观地查看数据所在的索引位置。(这里索引等价于标签)

创建Series对象

Pandas 使用 Series() 函数来创建 Series 对象,通过这个对象可以调用相应的方法和属性,从而达到处理数据的目的:

import pandas as pd
s=pd.Series( data, index, dtype, copy)

参数说明如下所示:

参数名称 描述
data 输入的数据,可以是列表、常量、ndarray 数组等。
index(相当于行) 索引值必须是惟一的,如果没有传递索引,则默认为 np.arrange(n)。
dtype dtype表示数据类型,如果没有提供,则会自动判断得出。
copy 表示对 data 进行拷贝,默认为 False。

创建Series的四种方式

1) 创建一个空Series对象

使用以下方法可以创建一个空的 Series 对象,如下所示:

import pandas as pd
#输出数据为空
s = pd.Series()
print(s)

输出结果如下:

Series([], dtype: float64)

2) ndarray创建Series对象

ndarray 是 NumPy 中的数组类型,当 data 是 ndarry 时,传递的索引必须具有与数组相同的长度。假如没有给 index 参数传参,在默认情况下,索引值将使用是 range(n) 生成,其中 n 代表数组长度,如下所示:

[0,1,2,3…. range(len(array))-1]

使用默认索引,创建 Series 序列对象:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
s = pd.Series(data)
print (s)

输出结果如下:

0   a
1   b
2   c
3   d
dtype: object

上述示例中没有传递任何索引,所以索引默认从 0 开始分配 ,其索引范围为 0 到

len(data)-1

,即 0 到 3。这种设置方式被称为“隐式索引”。

除了上述方法外,你也可以使用“显式索引”的方法定义索引标签,示例如下:

import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
#自定义索引标签(即显示索引)
s = pd.Series(data,index=[100,101,102,103])
print(s)

输出结果:

100  a
101  b
102  c
103  d
dtype: object
3) dict创建Series对象

您可以把 dict 作为输入数据。如果没有传入索引时会按照字典的键来构造索引;反之,当传递了索引时需要将索引标签与字典中的值一一对应。

下面两组示例分别对上述两种情况做了演示。

示例1,没有传递索引时:

import pandas as pd
import numpy as np
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
print(s)

输出结果:

a 0.0
b 1.0
c 2.0
dtype: float64

示例 2,为

index

参数传递索引时:

import pandas as pdimport numpy as npdata = {'a' : 0., 'b' : 1., 'c' : 2.}s = pd.Series(data,index=['b','c','d','a'])print(s)

输出结果:

b 1.0
c 2.0
d NaN
a 0.0
dtype: float64

当传递的索引值无法找到与其对应的值时,使用 NaN(非数字)填充。

4) 标量创建Series对象

如果 data 是标量值,则必须提供索引,示例如下:

import pandas as pd
import numpy as np
s = pd.Series(5, index=[0, 1, 2, 3])
print(s)

输出如下:

0  5
1  5
2  5
3  5
dtype: int64

标量值按照 index 的数量进行重复,并与其一一对应。

访问Series数据

1) 位置索引访问
2) 索引标签访问

Series常用属性

下面我们介绍 Series 的常用属性和方法。在下表列出了 Series 对象的常用属性。

名称 属性
axes 以列表的形式返回所有行索引标签。
dtype 返回对象的数据类型。
empty 返回一个布尔值,用于判断数据对象是否为空。
ndim 返回输入数据的维数。
size 返回 Series 对象的大小(长度)。
values 以 ndarray 的形式返回 Series 对象。以数组的形式返回 Series 对象中的数据。
index 返回一个RangeIndex对象,用来描述索引的取值范围。

全都是s.axes

Series常用方法

1) head()&tail()查看数据
import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(5))
print ("The original series is:")
print (s)
#返回前三行数据
print (s.head(3))
import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(4))
#原series
print(s)
#输出后两行数据
print (s.tail(2))

2) isnull()&nonull()检测缺失值
import pandas as pd#None代表缺失数据s=pd.Series([1,2,5,None])print(pd.isnull(s))  #是空值返回Trueprint(pd.notnull(s)) #空值返回False

输出结果:

0    False
1    False
2    False
3     True
dtype: bool

notnull():
0     True
1     True
2     True
3    False
dtype: bool

DataFrame结构

DataFrame 的每一行数据都可以看成一个 Series 结构,只不过,DataFrame 为这些行中每个数据值增加了一个列标签。因此 DataFrame 其实是从 Series 的基础上演变而来。在数据分析任务中 DataFrame 的应用非常广泛,因为它描述数据的更为清晰、直观。

同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增,行标签与 DataFrame 中的数据项一一对应。上述表格的行标签从 0 到 5,共记录了 5 条数据(图中将行标签省略)。当然你也可以用“显式索引”的方式来设置行标签。

  • DataFrame 每一列的标签值允许使用不同的数据类型;
  • DataFrame 是表格型的数据结构,具有行和列;
  • DataFrame 中的每个数据值都可以被修改。
  • DataFrame 结构的行数、列数允许增加或者删除;
  • DataFrame 有两个方向的标签轴,分别是行标签和列标签;
  • DataFrame 可以对行和列执行算术运算。

创建DataFrame对象

创建 DataFrame 对象的语法格式如下:

import pandas as pd
pd.DataFrame( data, index, columns, dtype, copy)

参数说明:

参数名称 说明
data 输入的数据,可以是 ndarray,series,list,dict,标量以及一个 DataFrame。
index 行标签,如果没有传递 index 值,则默认行标签是 np.arange(n),n 代表 data 的元素个数。
columns 列标签,如果没有传递 columns 值,则默认列标签是 np.arange(n)
dtype dtype表示每一列的数据类型。
copy 默认为 False,表示复制数据 data。

Pandas 提供了多种创建 DataFrame 对象的方式,主要包含以下五种,分别进行介绍。

1) 创建空的DataFrame对象

使用下列方式创建一个空的 DataFrame,这是 DataFrame 最基本的创建方法。

import pandas as pd
df = pd.DataFrame()
print(df)

输出结果如下:

Empty DataFrame
Columns: []
Index: []
2) 列表创建DataFame对象

可以使用单一列表或嵌套列表来创建一个 DataFrame。

示例 1,单一列表创建 DataFrame:

import pandas as pd
data = [1,2,3,4,5]
df = pd.DataFrame(data)
print(df)

输出如下:

     0
0    1
1    2
2    3
3    4
4    5

示例 2,使用嵌套列表创建 DataFrame 对象:

import pandas as pd
data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(data,columns=['Name','Age'])
print(df)

输出结果:

      Name      Age
0     Alex      10
1     Bob       12
2     Clarke    13

示例 3,指定数值元素的数据类型为 float:

import pandas as pd
data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(data,columns=['Name','Age'],dtype=float)
print(df)

输出结果:

      Name     Age
0     Alex     10.0
1     Bob      12.0
2     Clarke   13.0
3) 字典嵌套列表创建

data 字典中,键对应的值的元素长度必须相同(也就是列表长度相同)。如果传递了索引,那么索引的长度应该等于数组的长度;如果没有传递索引,那么默认情况下,索引将是 range(n),其中 n 代表数组长度。

示例 4:

import pandas as pd
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data)
print(df)

输出结果:

      Age      Name
0     28        Tom
1     34       Jack
2     29      Steve
3     42      Ricky

注意:这里使用了默认行标签,也就是 range(n)。它生成了 0,1,2,3,并分别对应了列表中的每个元素值。

示例 5,现在给上述示例 4 添加自定义的行标签:

import pandas as pd
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
print(df)

输出结果如下:

         Age    Name
rank1    28      Tom
rank2    34     Jack
rank3    29    Steve
rank4    42    Ricky

注意:index 参数为每行分配了一个索引。

4) 列表嵌套字典创建DataFrame对象

列表嵌套字典可以作为输入数据传递给 DataFrame 构造函数。默认情况下,字典的键被用作列名。

示例 6 如下:

import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print(df)

输出结果:

    a    b      c
0   1   2     NaN
1   5   10   20.0

注意:如果其中某个元素值缺失,也就是字典的 key 无法找到对应的 value,将使用 NaN 代替。

示例 7,给上述示例 6 添加行标签索引:

import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data, index=['first', 'second'])
print(df)

输出结果:

        a   b       c
first   1   2     NaN
second  5   10   20.0

示例 8,如何使用字典嵌套列表以及行、列索引表创建一个 DataFrame 对象。

import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df1 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b'])                  df2 = pd.DataFrame(data, index=['first', 'second'], columns=['a', 'b1'])
print(df1)
print(df2)

输出结果:

#df2输出
         a  b
first    1  2
second   5  10

#df1输出
         a  b1
first    1  NaN
second   5  NaN

注意:因为 b1 在字典键中不存在,所以对应值为 NaN。

5) Series创建DataFrame对象

您也可以传递一个字典形式的 Series,从而创建一个 DataFrame 对象,其输出结果的行索引是所有 index 的合集。 示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
print(df)

输出结果如下:

      one    two
a     1.0    1
b     2.0    2
c     3.0    3
d     NaN    4

注意:对于 one 列而言,此处虽然显示了行索引 ‘d’,但由于没有与其对应的值,所以它的值为 NaN。

列索引操作DataFrame

DataFrame 可以使用列索(columns index)引来完成数据的选取、添加和删除操作。下面依次对这些操作进行介绍。

1) 列索引选取数据列

您可以使用列索引,轻松实现数据选取,示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print(df ['one'])

输出结果:

a     1.0
b     2.0
c     3.0
d     NaN
Name: one, dtype: float64

2) 列索引添加数据列

使用 columns 列索引表标签可以实现添加新的数据列,示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
#使用df['列']=值,插入新的数据列
df['three']=pd.Series([10,20,30],index=['a','b','c'])
print(df)
#将已经存在的数据列做相加运算
df['four']=df['one']+df['three']
print(df)

输出结果:

使用列索引创建新数据列:
     one   two   three
a    1.0    1    10.0
b    2.0    2    20.0
c    3.0    3    30.0
d    NaN    4    NaN

已存在的数据列做算术运算:
      one   two   three    four
a     1.0    1    10.0     11.0
b     2.0    2    20.0     22.0
c     3.0    3    30.0     33.0
d     NaN    4     NaN     NaN

上述示例,我们初次使用了 DataFrame 的算术运算,这和 NumPy 非常相似。除了使用

df[]=value

的方式外,您还可以使用 insert() 方法插入新的列,示例如下:

import pandas as pd
info=[['Jack',18],['Helen',19],['John',17]]
df=pd.DataFrame(info,columns=['name','age'])
print(df)
#注意是column参数
#数值1代表插入到columns列表的索引位置
df.insert(1,column='score',value=[91,90,75])
print(df)

输出结果:

添加前:
    name  age
0   Jack   18
1  Helen   19
2   John   17

添加后:
    name  score  age
0   Jack     91   18
1  Helen     90   19
2   John     75   17

3) 列索引删除数据列

通过 del 和 pop() 都能够删除 DataFrame 中的数据列。示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']),
   'three' : pd.Series([10,20,30], index=['a','b','c'])}
df = pd.DataFrame(d)
print ("Our dataframe is:")
print(df)
#使用del删除
del df['one']
print(df)
#使用pop方法删除
df.pop('two')
print (df)

输出结果:

原DataFrame:
      one   three  two
a     1.0    10.0   1
b     2.0    20.0   2
c     3.0    30.0   3
d     NaN     NaN   4

使用del删除 first:
      three    two
a     10.0     1
b     20.0     2
c     30.0     3
d     NaN      4

使用 pop()删除:
   three
a  10.0
b  20.0
c  30.0
d  NaN

1) 标签索引选取

可以将行标签传递给 loc 函数,来选取数据。示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print(df.loc['b'])

输出结果:

one 2.0
two 2.0
Name: b, dtype: float64

注意:loc 允许接两个参数分别是行和列,参数之间需要使用“逗号”隔开,但该函数只能接收标签索引

2) 整数索引选取

通过将数据行所在的索引位置传递给 iloc 函数,也可以实现数据行选取。示例如下:

import pandas as pd
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print (df.iloc[2])

输出结果:

one   3.0
two   3.0
Name: c, dtype: float64

注意:iloc 允许接受两个参数分别是行和列,参数之间使用“逗号”隔开,但该函数只能接收整数索引。

3) 切片操作多行选取

您也可以使用切片的方式同时选取多行。示例如下:

import pandas as pd

d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
   'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}

df = pd.DataFrame(d)
#左闭右开
print(df[2:4])

输出结果:

   one  two
c  3.0    3
d  NaN    4

4) 添加数据行

使用 append() 函数,可以将新的数据行添加到 DataFrame 中,该函数会在行末追加数据行。示例如下:

import pandas as pd
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
#在行末追加新数据行
df = df.append(df2)
print(df)

输出结果:

   a  b
0  1  2
1  3  4
0  5  6
1  7  8

5) 删除数据行

您可以使用行索引标签,从 DataFrame 中删除某一行数据。如果索引标签存在重复,那么它们将被一起删除。示例如下:

import pandas as pd
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2)
print(df)
#注意此处调用了drop()方法
df = df.drop(0)
print (df)

输出结果:

执行drop(0)前:
   a  b
0  1  2
1  3  4
0  5  6
1  7  8

执行drop(0)后:
  a b
1 3 4
1 7 8

在上述的示例中,默认使用 range(2) 生成了行索引,并通过 drop(0) 同时删除了两行数据。

常用属性和方法汇总

DataFrame 的属性和方法,与 Series 相差无几,如下所示:

名称 属性&方法描述
T 行和列转置。
axes 返回一个仅以行轴标签和列轴标签为成员的列表。
dtypes 返回每列数据的数据类型。
empty DataFrame中没有数据或者任意坐标轴的长度为0,则返回True。
ndim 轴的数量,也指数组的维数。
shape 返回一个元组,表示了 DataFrame 维度。
size DataFrame中的元素数量。
values 使用 numpy 数组表示 DataFrame 中的元素值。
head() 返回前 n 行数据。
tail() 返回后 n 行数据。
shift() 将行或列移动指定的步幅长度
8) values

以 ndarray 数组的形式返回 DataFrame 中的数据。

import pandas as pd
import numpy as np
d = {'Name':pd.Series(['c语言中文网','编程帮',"百度",'360搜索','谷歌','微学苑','Bing搜索']),
   'years':pd.Series([5,6,15,28,3,19,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#构建DataFrame
df = pd.DataFrame(d)
#DataFrame的数据
print(df.values)

输出结果:

[['c语言中文网' 5 4.23]
['编程帮' 6 3.24]
['百度' 15 3.98]
['360搜索' 28 2.56]
['谷歌' 3 3.2]
['微学苑' 19 4.6]
['Bing搜索' 23 3.8]]

10) shift()移动行或列(没看懂)
参数名称 说明
peroids 类型为int,表示移动的幅度,可以是正数,也可以是负数,默认值为1。
freq 日期偏移量,默认值为None,适用于时间序。取值为符合时间规则的字符串。
axis 如果是 0 或者 “index” 表示上下移动,如果是 1 或者 “columns” 则会左右移动。
fill_value 该参数用来填充缺失值。
常用的统计学函数:
函数名称 描述说明
count() 统计某个非空值的数量。
sum() 求和
mean() 求均值
median() 求中位数
mode() 求众数
std() 求标准差
min() 求最小值
max() 求最大值
abs() 求绝对值
prod() 求所有数值的乘积。
cumsum() 计算累计和,axis=0,按照行累加;axis=1,按照列累加。
cumprod() 计算累计积,axis=0,按照行累积;axis=1,按照列累积。
corr() 计算数列或变量之间的相关系数,取值-1到1,值越大表示关联性越强。

Pandas使用自定义函数

如果想要应用自定义的函数,或者把其他库中的函数应用到 Pandas 对象中,有以下三种方法:

  • 1) 操作整个 DataFrame 的函数:pipe()
  • 2) 操作行或者列的函数:apply()
  • 3) 操作单一元素的函数:applymap()

求每一列中,最大值与最小值之差。示例如下:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print(df.apply(lambda x: x.max() - x.min()))

输出结果:

col1    3.538252
col2    2.904771
col3    2.650892
dtype: float64

运用该函数之后返回的结果是服从均值为0,方差为1的标准正态分布,而不是局限在0-1之间,也可以为负值,因为标准正态分布的曲线是关于x轴对阵的。其括号内的参数如果不指定,那么生成的是一个浮点型的数;如果指定一个数,那么生成的是一个numpy.ndarray类型的数组;如果指定两个数字,那么生成的是一个二维的numpy.ndarray类型的数组。和rand()相比,除了元素值不一样,其他的性质是一样的。

Pandas reindex重置索引(在大的表里面找小的表)

重命名标签

9.Pandas iteration遍历

在 Pandas 中同样也是使用 for 循环进行遍历。通过for遍历后,Series 可直接获取相应的 value,而 DataFrame 则会获取列标签。

import pandas as pd
import numpy as np
N=20
df = pd.DataFrame({
   'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
   'x': np.linspace(0,stop=N-1,num=N),
   'y': np.random.rand(N),
   'C': np.random.choice(['Low','Medium','High'],N).tolist(),
   'D': np.random.normal(100, 10, size=(N)).tolist()
   })
print(df)
for col in df:
   print (col)

内置迭代方法

如果想要遍历 DataFrame 的每一行,我们下列函数:

    1. iteritems():以键值对 (key,value) 的形式遍历;
    1. iterrows():以 (row_index,row) 的形式遍历行;
    1. itertuples():使用已命名元组的方式对行遍历。

10.Pandas sorting排序

按标签排序

使用 sort_index() 方法对行标签排序,指定轴参数(axis)或者排序顺序。或者可以对 DataFrame 进行排序。默认情况下,按照行标签序排序。

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index()
print(sorted_df)

1) 排序顺序

通过将布尔值传递给

ascending

参数,可以控制排序的顺序(行号顺序)。示例如下:

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df = unsorted_df.sort_index(ascending=False)
print(sorted_df)

按列标签排序

通过给 axis 轴参数传递 0 或 1,可以对列标签进行排序。默认情况下,axis=0 表示按行排序;而 axis=1 则表示按列排序。

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index(axis=1)
print (sorted_df)

按值排序

与标签排序类似,sort_values() 表示按值排序。它接受一个by参数,该参数值是要排序数列的 DataFrame 列名。示例如下:

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1')
print (sorted_df)

输出结果:

   col1  col2
1     1     3
2     1     2
3     1     4
0     2     1

注意:当对 col1 列排序时,相应的 col2 列的元素值和行索引也会随 col1 一起改变。by 参数可以接受一个列表参数值

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by=['col1','col2'])
print (sorted_df)

输出结果:

   col1  col2
2     1     2
1     1     3
3     1     4
0     2     1

排序算法

sort_values() 提供了参数

kind

用来指定排序算法。这里有三种排序算法:

  • mergesort
  • heapsort
  • quicksort

默认为 quicksort(快速排序) ,其中 Mergesort 归并排序是最稳定的算法。

import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1' ,kind='mergesort')
print (sorted_df)

输出结果:

   col1  col2
1     1     3
2     1     2
3     1     4
0     2     1

11.Pandas去重函数:drop_duplicates()

函数格式

drop_duplicates()函数的语法格式如下:

df.drop_duplicates(subset=['A','B','C'],keep='first',inplace=True)

参数说明如下:

  • subset:表示要进去重的列名,默认为 None。
  • keep:有三个可选参数,分别是 first、last、False,默认为 first,表示只保留第一次出现的重复项,删除其余重复项,last 表示只保留最后一次出现的重复项,False 则表示删除所有重复项。
  • inplace:布尔值参数,默认为 False 表示删除重复项后返回一个副本,若为 Ture 则表示直接在原数据上删除重复项。
#重置索引,从0重新开始
df.reset_index(drop=True)

Python Pandas处理字符串(方法详解)

常用的字符串处理函数如下表所示:

函数名称 函数功能和描述
lower() 将的字符串转换为小写。
upper() 将的字符串转换为大写。
len() 得出字符串的长度。
strip() 去除字符串两边的空格(包含换行符)。
split() 用指定的分割符分割字符串。
cat(sep=“”) 用给定的分隔符连接字符串元素。
get_dummies() 返回一个带有独热编码值的 DataFrame 结构。
contains(pattern) 如果子字符串包含在元素中,则为每个元素返回一个布尔值 True,否则为 False。
replace(a,b) 将值 a 替换为值 b。
count(pattern) 返回每个字符串元素出现的次数。
startswith(pattern) 如果 Series 中的元素以指定的字符串开头,则返回 True。
endswith(pattern) 如果 Series 中的元素以指定的字符串结尾,则返回 True。
findall(pattern) 以列表的形式返出现的字符串。
swapcase() 交换大小写。
islower() 返回布尔值,检查 Series 中组成每个字符串的所有字符是否都为小写。
issupper() 返回布尔值,检查 Series 中组成每个字符串的所有字符是否都为大写。
isnumeric() 返回布尔值,检查 Series 中组成每个字符串的所有字符是否都为数字。
repeat(value) 以指定的次数重复每个元素。
find(pattern) 返回字符串第一次出现的索引位置。
len()
import pandas as pd
import numpy as np
s = pd.Series(['C', 'Python', 'java', 'go', np.nan, '1125','javascript'])
print(s.str.len())

13.pandas设置数据格式

它们的功能介绍如下:

函数名称 说明
get_option 获取解释器的默认参数值。
set_option 更改解释器的默认参数值。
reset_option 解释器的参数重置为默认值。
describe_option 输出参数的描述信息。
option_context 临时设置解释器参数,当退出使用的语句块时,恢复为默认值。

14.Pandas loc/iloc用法详解

方法名称 说明
.loc[] 基于标签索引选取数据
.iloc[] 基于整数索引选取数据

df.loc[] 只能使用标签索引,不能使用整数索引。当通过标签索引的切片方式来筛选数据时,它的取值前闭后闭,也就是只包括边界值标签(开始和结束)。

loc[] 接受两个参数,并以','分隔。第一个位置表示行,第二个位置表示列。

df.iloc[] 只能使用整数索引,不能使用标签索引,通过整数索引切片选择数据时,前闭后开(不包含边界结束值)。同 Python 和 NumPy 一样,它们的索引都是从 0 开始。

loc print(df.loc[‘a’:‘d’,:]) print(df.loc[[‘a’,‘b’,‘f’,‘h’],[‘A’,‘C’]])
iloc print df.iloc[[1, 3, 5], [1, 3]] print df.iloc[1:3, 1:3]

15.统计函数

16.窗口函数

17.聚合函数

18.缺失值处理

检查缺失值

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'])
print(df)
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
print(df.isnull())

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df.notnull())

清理并填充缺失值

1) 用标量值替换NaN值
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one',
'two', 'three'])
df = df.reindex(['a', 'b', 'c'])
print(df)
#用 0 填充 NaN
print (df.fillna(0))

2) 向前和向后填充NA
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print df.fillna(method='ffill')

3) 使用replace替换通用值
import pandas as pd
import numpy as np
df = pd.DataFrame({'one':[10,20,30,40,50,666], 'two':[99,0,30,40,50,60]})
#使用replace()方法
print (df.replace({99:10,666:60,0:20}))

删除缺失值

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three'])
df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
print(df)
#删除缺失值
print (df.dropna())

19.分组操作

创建groupby分组对象

import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
#生成分组groupby对象
print(df.groupby('score'))

查看分组结果

1) groups查看分组结果

通过调用groups属性查看分组

import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby('score').groups)

2) 多个列标签分组
import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
print(df.groupby(['Name','score']).groups)

通过 get_group() 方法可以选择组内的具体数据项:

import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#根据score来分组
grouped=df.groupby('score')
#根据对应组的数据值,选择一个组
print(grouped.get_group(91))

遍历分组数据

import pandas as pd
import numpy as np
data = {'Name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
#查看分组
grouped=df.groupby('score')
for label, option_course in grouped:
#其中key代表分组后字典的键,也就是score
    print(label)
#字典对应的值选修的科目
    print(option_course)

输出结果:
82
   Name  score   option_course
0  John     82            C#
87
   Name  score   option_course
3  Ella     87             C
91
   Name  score   option_course
2  Sona     91          Java
98
    Name  score  option_course
1  Helen     98        Python

聚合函数

import pandas as pd
import numpy as np
data = {'name': ['John', 'Helen', 'Sona', 'Ella'],
   'score': [82, 98, 91, 87],
   'option_course': ['C#','Python','Java','C']}
df = pd.DataFrame(data)
print(df)
grouped=df.groupby('name')
print(df.groupby('name').groups)
print(grouped['score'].agg([np.size,np.mean,np.std]))

筛选数据分组

import pandas as pd
import numpy as np
data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
   'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
   'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
   'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
   'Points':[874,789,863,663,741,802,756,788,694,701,812,698]}
df = pd.DataFrame(data)
#定义lambda函数来筛选数据
print (df.groupby('Team').filter(lambda x: len(x) >= 2))

20.merge合并

下面创建两个不同的 DataFrame,然后对它们进行合并操作:

import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['William', 'Albert', 'Tony', 'Allen'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
print (left) 
print (right)   

输出如下:

   id    Name subject_id
0   1   Smith       sub1
1   2   Maiki       sub2
2   3  Hunter       sub4
3   4   Hilen       sub6

   id     Name subject_id
0   1  William       sub2
1   2   Albert       sub4
2   3     Tony       sub3
3   4    Allen       sub6

1) 在单个键上进行合并操作

通过 on 参数指定一个连接键,然后对上述 DataFrame 进行合并操作:

import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['William', 'Albert', 'Tony', 'Allen'], 
   'subject_id':['sub2','sub4','sub3','sub6']})
#通过on参数指定合并的键
print(pd.merge(left,right,on='id'))import pandas as pd left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['William', 'Albert', 'Tony', 'Allen'],    'subject_id':['sub2','sub4','sub3','sub6']})#通过on参数指定合并的键print(pd.merge(left,right,on='id'))

输出结果:

   id  Name_x subject_id_x   Name_y subject_id_y
0   1   Smith         sub1  William         sub2
1   2   Maiki         sub2   Albert         sub4
2   3  Hunter         sub4     Tony         sub3
3   4   Hilen         sub6    Allen         sub6

2) 在多个键上进行合并操作

下面示例,指定多个键来合并上述两个 DataFrame 对象:

import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['Bill', 'Lucy', 'Jack', 'Mike'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
print(pd.merge(left,right,on=['id','subject_id']))

输出结果:

   id Name_x subject_id Name_y
0   4  Hilen       sub6   Mike

使用how参数合并

通过

how

参数可以确定 DataFrame 中要包含哪些键,如果在左表、右表都不存的键,那么合并后该键对应的值为 NaN。为了便于大家学习,我们将 how 参数和与其等价的 SQL 语句做了总结:

Merge方法 等效 SQL 描述
left LEFT OUTER JOIN 使用左侧对象的key
right RIGHT OUTER JOIN 使用右侧对象的key
outer FULL OUTER JOIN 使用左右两侧所有key的并集
inner INNER JOIN 使用左右两侧key的交集
1) left join
import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['Bill', 'Lucy', 'Jack', 'Mike'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
#以left侧的subject_id为键
print(pd.merge(left,right,on='subject_id',how="left"))import pandas as pd left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],    'subject_id':['sub2','sub4','sub3','sub6']}) #以left侧的subject_id为键print(pd.merge(left,right,on='subject_id',how="left"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0     1   Smith       sub1   NaN    NaN
1     2   Maiki       sub2   1.0   Bill
2     3  Hunter       sub4   2.0   Lucy
3     4   Hilen       sub6   4.0   Mike

2) right join
import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['Bill', 'Lucy', 'Jack', 'Mike'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
#以right侧的subject_id为键
print(pd.merge(left,right,on='subject_id',how="right"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0   2.0   Maiki       sub2     1   Bill
1   3.0  Hunter       sub4     2   Lucy
2   4.0   Hilen       sub6     4   Mike
3   NaN     NaN       sub3     3   Jack

3) outer join(并集)
import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['Bill', 'Lucy', 'Jack', 'Mike'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
#求出两个subject_id的并集,并作为键
print(pd.merge(left,right,on='subject_id',how="outer"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0   1.0   Smith       sub1   NaN    NaN
1   2.0   Maiki       sub2   1.0   Bill
2   3.0  Hunter       sub4   2.0   Lucy
3   4.0   Hilen       sub6   4.0   Mike
4   NaN     NaN       sub3   3.0   Jack

4) inner join(交集)
import pandas as pd 
left = pd.DataFrame({ 
   'id':[1,2,3,4], 
   'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'], 
   'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({ 
    'id':[1,2,3,4], 
   'Name': ['Bill', 'Lucy', 'Jack', 'Mike'], 
   'subject_id':['sub2','sub4','sub3','sub6']}) 
#求出两个subject_id的交集,并将结果作为键
print(pd.merge(left,right,on='subject_id',how="inner"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0     2   Maiki       sub2     1   Bill
1     3  Hunter       sub4     2   Lucy
2     4   Hilen       sub6     4   Mike

注意:当 a 与 b 进行内连操作时 a.join(b) 不等于 b.join(a)。

21.Pandas concat连接操作

concat()

concat() 函数用于沿某个特定的轴执行连接操作。下面让我们创建不同的对象,并对其进行连接。

import pandas as pd
a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']},
#连接a与b
print(pd.concat([a,b]))

输出结果:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

如果想把指定的键与 DataFrame 对象连接,您可以使用 keys 参数来实现。如下所示:

import pandas as pd
a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D1', 'D2', 'D5', 'D6']},
                     index=[2,3,4,5])
#连接a与b,并给a,b连接一个指定的键
print(pd.concat([a,b],keys=['x','y']))

输出结果:

      A   B   C   D
x 0  A0  B0  C0  D0
  1  A1  B1  C1  D1
  2  A2  B2  C2  D2
  3  A3  B3  C3  D3
y 2  A4  B4  C4  D1
  3  A5  B5  C5  D2
  4  A6  B6  C6  D5
  5  A7  B7  C7  D6

上述示中,可以看出行索引 index 存在重复使用的现象,如果想让输出的行索引遵循依次递增的规则,那么需要将 ignore_index 设置为 True。

import pandas as pd
a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D1', 'D2', 'D5', 'D6']},
                     index=[2,3,4,5])
#连接a与b,设置 ignore_index 等于 True
print(pd.concat([a,b],keys=['x','y'],ignore_index=True))

输出结果:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  A4  B4  C4  D1
5  A5  B5  C5  D2
6  A6  B6  C6  D5
7  A7  B7  C7  D6

注意:此时的索引顺序被改变了,而且键 keys 指定的键也被覆盖了。

如果您想要沿着 axis=1 添加两个对象,那么将会追加新的列。

import pandas as pd
a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D1', 'D2', 'D5', 'D6']},
                     index=[4,5,6,7])
#沿着 axis=1,连接a与b
print(pd.concat([a,b],axis=1))

输出结果:

     A    B    C    D    A    B    C    D
0   A0   B0   C0   D0  NaN  NaN  NaN  NaN
1   A1   B1   C1   D1  NaN  NaN  NaN  NaN
2   A2   B2   C2   D2  NaN  NaN  NaN  NaN
3   A3   B3   C3   D3  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN   A4   B4   C4   D1
5  NaN  NaN  NaN  NaN   A5   B5   C5   D2
6  NaN  NaN  NaN  NaN   A6   B6   C6   D5
7  NaN  NaN  NaN  NaN   A7   B7   C7   D6

append()

如果要连接 Series 和 DataFrame 对象,有一个最方便、快捷的方法,那就是 append() 方法。该方法沿着 axis=0 (行方向)进行操作。

import pandas as pd
a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D1', 'D2', 'D5', 'D6']},
                     index=[4,5,6,7])
#沿着 axis=0,使用 apppend()方法连接a与b
print(a.append(b))

输出结果:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  A4  B4  C4  D1
5  A5  B5  C5  D2
6  A6  B6  C6  D5
7  A7  B7  C7  D6

当然 append() 函数也可接收多个对象,示例如下:

a= pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
b= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D1', 'D2', 'D5', 'D6']},
                     index=[4,5,6,7])
c= pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B8', 'B9', 'B10', 'B7'],
                    'C': ['C9', 'C8', 'C7', 'C6'],
                    'D': ['D8', 'D5', 'D7', 'D6']},
                     index=[8,9,10,11])
print(a.append(b,c,a))

输出结果:

    A    B   C   D
0   A0   B0  C0  D0
1   A1   B1  C1  D1
2   A2   B2  C2  D2
3   A3   B3  C3  D3
4   A4   B4  C4  D1
5   A5   B5  C5  D2
6   A6   B6  C6  D5
7   A7   B7  C7  D6
8   A4   B8  C9  D8
9   A5   B9  C8  D5
10  A6   B10 C7  D7
11  A7   B7  C6  D6
0   A0   B0  C0  D0
1   A1   B1  C1  D1
2   A2   B2  C2  D2
3   A3   B3  C3  D3

22.Python Pandas时间序列详解

23.Pandas日期时间格式化

24.Padans Timedelta时间差

25.Pandas sample随机抽样

参数说明如下表所示:

参数名称 参数说明
n 表示要抽取的行数。
frac 表示抽取的比例,比如 frac=0.5,代表抽取总体数据的50%。
replace 布尔值参数,表示是否以有放回抽样的方式进行选择,默认为 False,取出数据后不再放回。
weights 可选参数,代表每个样本的权重值,参数值是字符串或者数组。
random_state 可选参数,控制随机状态,默认为 None,表示随机数据不会重复;若为 1 表示会取得重复数据。
axis 表示在哪个方向上抽取数据(axis=1 表示列/axis=0 表示行)。

该函数返回与数据集类型相同的新对象,相当于 numpy.random.choice()。实例如下:

import pandas as pd  
dict = {'name':["Jack", "Tom", "Helen", "John"],'age': [28, 39, 34, 36],'score':[98,92,91,89]} 
info = pd.DataFrame(dict)
#默认随机选择两行
info.sample(n=2)
#随机选择两列
info.sample(n=2,axis=1)

输出结果:

   name  age  score
3  John   36     89
0  Jack   28     98

   score   name
0     98   Jack
1     92    Tom
2     91  Helen
3     89   John

再来看一组示例:

import pandas as pd
info = pd.DataFrame({'data1': [2, 6, 8, 0], 'data2': [2, 5, 0, 8], 'data3': [12, 2, 1, 8]}, index=['John', 'Parker', 'Smith', 'William'])
info
#随机抽取3个数据
info['data1'].sample(n=3)
#总体的50%
info.sample(frac=0.5, replace=True)
#data3序列为权重值,并且允许重复数据出现
info.sample(n=2, weights='data3', random_state=1)

输出结果:

随机选择3行数据:
William    0
Smith      8
Parker     6
Name: data1, dtype: int64

         data1  data2  data3
John         2      2     12
William      0      8      8

         data1  data2  data3
John         2      2     12
William      0      8      8

26.Pandas resample数据重采样

27.Python Pandas分类对象

28.Python Pandas绘图教程(详解版)

Pandas 在数据分析、数据可视化方面有着较为广泛的应用,Pandas 对 Matplotlib 绘图软件包的基础上单独封装了一个plot()接口,通过调用该接口可以实现常用的绘图操作。本节我们深入讲解一下 Pandas 的绘图操作。

Pandas 之所以能够实现了数据可视化,主要利用了 Matplotlib 库的 plot() 方法,它对 plot() 方法做了简单的封装,因此您可以直接调用该接口

import pandas as pd
import numpy as np
#创建包含时间序列的数据
df = pd.DataFrame(np.random.randn(8,4),index=pd.date_range('2/1/2020',periods=8), columns=list('ABCD'))
df.plot()

除了使用默认的线条绘图外,您还可以使用其他绘图方式,如下所示:

  • 柱状图:bar() 或 barh()
  • 直方图:hist()
  • 箱状箱:box()
  • 区域图:area()
  • 散点图:scatter()

通过关键字参数kind可以把上述方法传递给 plot()。

29.Python Pandas读取文件

当使用 Pandas 做数据分析的时,需要读取事先准备好的数据集,这是做数据分析的第一步。Panda 提供了多种读取数据的方法:

  • read_csv() 用于读取文本文件
  • read_json() 用于读取 json 文件
  • read_sql_query() 读取 sql 语句的,

30.CSV文件读取

import pandas as pd
import matplotlib .pyplot as plt
import numpy as np
df = pd.read_excel(r"D:\画图\data_01.xlsx", sheet_name=0)
print(df)

CSV 又称逗号分隔值文件,是一种简单的文件格式,以特定的结构来排列表格数据。 CSV 文件能够以纯文本形式存储表格数据,比如电子表格、数据库文件,并具有数据交换的通用格式。CSV 文件会在 Excel 文件中被打开,其行和列都定义了标准的数据格式。

1>新建txt

ID,Name,Age,City,Salary
1,Jack,28,Beijing,22000
2,Lida,32,Shanghai,19000
3,John,43,Shenzhen,12000
4,Helen,38,Hengshui,3500

2>将 txt 文件另存为 person.csv 文件格式,直接修改文件扩展名即可。

普通读取

ead_csv() 表示从 CSV 文件中读取数据,并创建 DataFrame 对象。

import pandas as pd#需要注意文件的路径df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv")print (df)

输出结果:

   ID   Name  Age      City  Salary
0   1   Jack   28   Beijing   22000
1   2   Lida   32  Shanghai   19000
2   3   John   43  Shenzhen   12000
3   4  Helen   38  Hengshui    3500

1) 自定义索引

在 CSV 文件中指定了一个列,然后使用index_col可以实现自定义索引。

import pandas as pd
df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",index_col=['ID'])
print(df)

输出结果:

     Name  Age      City  Salary
ID                             
1    Jack   28   Beijing   22000
2    Lida   32  Shanghai   19000
3    John   43  Shenzhen   12000
4   Helen   38  Hengshui    3500

2) 查看每一列的dtype
import pandas as pd
#转换salary为float类型
df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",dtype={'Salary':np.float64})
print(df.dtypes)

输出结果:

ID          int64
Name       object
Age         int64
City       object
Salary    float64
dtype: object

注意:默认情况下,Salary 列的 dtype 是 int 类型,但结果显示其为 float 类型,因为我们已经在上述代码中做了类型转换。

3) 更改文件标头名

使用 names 参数可以指定头文件的名称。

import pandas as pd
df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",names=['a','b','c','d','e'])
print(df)

输出结果:

    a      b    c         d       e
0  ID   Name  Age      City  Salary
1   1   Jack   28   Beijing   22000
2   2   Lida   32  Shanghai   19000
3   3   John   43  Shenzhen   12000
4   4  Helen   38  Hengshui    3500

注意:文件标头名是附加的自定义名称,但是您会发现,原来的标头名(列标签名)并没有被删除,此时您可以使用

header

参数来删除它。

通过传递标头所在行号实现删除,如下所示:

import pandas as pd
df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",names=['a','b','c','d','e'],header=0)
print(df)

输出结果:

   a      b   c         d      e
0  1   Jack  28   Beijing  22000
1  2   Lida  32  Shanghai  19000
2  3   John  43  Shenzhen  12000
3  4  Helen  38  Hengshui   3500

假如原标头名并没有定义在第一行,您也可以传递相应的行号来删除它。

4) 跳过指定的行数
skiprows

参数表示跳过指定的行数。

import pandas as pd
df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",skiprows=2)
print(df)

输出结果:

   2   Lida  32  Shanghai  19000
0  3   John  43  Shenzhen  12000
1  4  Helen  38  Hengshui   3500

注意:包含标头所在行。

to_csv()

Pandas 提供的 to_csv() 函数用于将 DataFrame 转换为 CSV 数据。如果想要把 CSV 数据写入文件,只需向函数传递一个文件对象即可。否则,CSV 数据将以字符串格式返回。

import pandas as pd
#注意:pd.NaT表示null缺失数据
data = {'Name': ['Smith', 'Parker'], 'ID': [101, pd.NaT], 'Language': ['Python', 'JavaScript']}
info = pd.DataFrame(data)
csv_data = info.to_csv("D:/画图/20230322.csv",sep='|')

31.Pandas Excel读写操作详解

to_excel()

通过 to_excel() 函数可以将 Dataframe 中的数据写入到 Excel 文件。

如果想要把单个对象写入 Excel 文件,那么必须指定目标文件名;如果想要写入到多张工作表中,则需要创建一个带有目标文件名的ExcelWriter对象,并通过sheet_name参数依次指定工作表的名称。

to_ecxel() 语法格式如下:

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)  

下表列出函数的常用参数项,如下表所示:

参数名称 描述说明
excel_wirter 文件路径或者 ExcelWrite 对象。
sheet_name 指定要写入数据的工作表名称。
na_rep 缺失值的表示形式。
float_format 它是一个可选参数,用于格式化浮点数字符串。
columns 指要写入的列。
header 写出每一列的名称,如果给出的是字符串列表,则表示列的别名。
index 表示要写入的索引。
index_label 引用索引列的列标签。如果未指定,并且 hearder 和 index 均为为 True,则使用索引名称。如果 DataFrame 使用 MultiIndex,则需要给出一个序列。
startrow 初始写入的行位置,默认值0。表示引用左上角的行单元格来储存 DataFrame。
startcol 初始写入的列位置,默认值0。表示引用左上角的列单元格来储存 DataFrame。
engine 它是一个可选参数,用于指定要使用的引擎,可以是 openpyxl 或 xlsxwriter。
import pandas as pd
#创建DataFrame数据
info_website = pd.DataFrame({'name': ['编程帮', 'c语言中文网', '微学苑', '92python'],
     'rank': [1, 2, 3, 4],
     'language': ['PHP', 'C', 'PHP','Python' ],
     'url': ['www.bianchneg.com', 'c.bianchneg.net', 'www.weixueyuan.com','www.92python.com' ]})
#创建ExcelWrite对象
writer = pd.ExcelWriter("D:/画图/20230322.xlsx")
info_website.to_excel(writer)
writer.save()
print('输出成功')

read_excel()

如果您想读取 Excel 表格中的数据,可以使用 read_excel() 方法,其语法格式如下:

pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None,
              usecols=None, squeeze=False,dtype=None, engine=None,
              converters=None, true_values=None, false_values=None,
              skiprows=None, nrows=None, na_values=None, parse_dates=False,
              date_parser=None, thousands=None, comment=None, skipfooter=0,
              convert_float=True, **kwds)

下表对常用参数做了说明:

参数名称 说明
io 表示 Excel 文件的存储路径。
sheet_name 要读取的工作表名称。
header 指定作为列名的行,默认0,即取第一行的值为列名;若数据不包含列名,则设定 header = None。若将其设置 为 header=2,则表示将前两行作为多重索引。
names 一般适用于Excel缺少列名,或者需要重新定义列名的情况;names的长度必须等于Excel表格列的长度,否则会报错。
index_col 用做行索引的列,可以是工作表的列名称,如 index_col = ‘列名’,也可以是整数或者列表。
usecols int或list类型,默认为None,表示需要读取所有列。
squeeze boolean,默认为False,如果解析的数据只包含一列,则返回一个Series。
converters 规定每一列的数据类型。
skiprows 接受一个列表,表示跳过指定行数的数据,从头部第一行开始。
nrows 需要读取的行数。
skipfooter 接受一个列表,省略指定行数的数据,从尾部最后一行开始。

示例如下所示:

import pandas as pd
#读取excel数据
df = pd.read_excel('website.xlsx',index_col='name',skiprows=[2])
#处理未命名列
df.columns = df.columns.str.replace('Unnamed.*', 'col_label')
print(df)

输出结果:

           col_label     rank    language          agelimit
name                                                 
编程帮           0         1        PHP       www.bianchneg.com
微学苑           2         3        PHP       www.weixueyuan.com
92python        3         4        Python    www.92python.com

再看一组示例:

import pandas as pd
#读取excel数据
#index_col选择前两列作为索引列
#选择前三列数据,name列作为行索引
df = pd.read_excel('website.xlsx',index_col='name',index_col=[0,1],usecols=[1,2,3])
#处理未命名列,固定用法
df.columns = df.columns.str.replace('Unnamed.*', 'col_label')
print(df)

输出结果:

                   language
name      rank        
编程帮       1          PHP
c语言中文网   2           C
微学苑       3          PHP
92python    4         Python

32.Pandas index操作索引

索引(index)是 Pandas 的重要工具,通过索引可以从 DataFame 中选择特定的行数和列数,这种选择数据的方式称为“子集选择”。

在 Pandas 中,索引值也被称为标签(label),它在 Jupyter 笔记本中以粗体字进行显示。索引可以加快数据访问的速度,它就好比数据的书签,通过它可以实现数据的快速查找。

创建索引

创建索引

通过示例对 index 索引做进一步讲解。下面创建一个带有 index 索引的数据,并使用 read_csv() 这些读取数据:

import pandas as pd    data = pd.read_csv("person.csv") print(data) 

输出结果:

   ID   Name  Age      City  Salary
0   1   Jack   28   Beijing   22000
1   2   Lida   32  Shanghai   19000
2   3   John   43  Shenzhen   12000
3   4  Helen   38  Hengshui    3500

通过列索引(标签)读取多列数据。

import pandas as pd  
#设置"Name"为行索引    
data = pd.read_csv("person.csv", index_col ="Name")   
# 通过列标签选取多列数据  
a = data[["City","Salary"]]
print(a)

输出结果:

           City  Salary
Name                  
Jack    Beijing   22000
Lida   Shanghai   19000
John   Shenzhen   12000
Helen  Hengshui    3500

再看一组简单的示例:

import pandas as pd  
info =pd.read_csv("person.csv", index_col ="Name")
#获取单列数据,或者以列表的形式传入["Salary"] 
a =info["Salary"] 
print(a)

输出结果:

       Salary
Name        
Jack    22000
Lida    19000
John    12000
Helen    3500

设置索引(就是证明set_index>>index_col)

set_index()已存在的列标签设置为 DataFrame 行索引。除了可以添加索引外,也可以替换已经存在的索引。比如您也可以把 Series 或者一个 DataFrme 设置成另一个 DataFrame 的索引。示例如下:

info = pd.DataFrame({'Name': ['Parker', 'Terry', 'Smith', 'William'],  'Year': [2011, 2009, 2014, 2010], 
'Leaves': [10, 15, 9, 4]})
#设置Name为行索引
print(info.set_index('Name'))

输出结果:

         Year  Leaves
Name                
Parker   2011      10
Terry    2009      15
Smith    2014       9
William  2010       4

重置索引(reset_index())

您可以使用 reset_index() 来恢复初始行索引,示例如下:

import pandas as pd
import numpy as np
info = pd.DataFrame([('William', 'C'), 
('Smith', 'Java'), 
('Parker', 'Python'), 
('Phill', np.nan)], 
index=[1, 2, 3, 4], 
columns=('name', 'Language')) 
print(info)
print(info.reset_index())

输出结果:

重置前:
     name    Language
1  William        C
2    Smith     Java
3   Parker   Python
4    Phill      NaN
重置后:
   index     name    Language
0      1  William        C
1      2    Smith     Java
2      3   Parker   Python
3      4    Phill      NaN

33.创建分层索引

1) 直接创建

通过 MultiIndex() 的levels参数能够直接创建分层索引,示例如下:

import pandas as pd 
import numpy as np 
#为leves传递一个1行5列的二维数组
df=pd.MultiIndex(levels=[[np.nan, 2, pd.NaT, None, 5]], codes=[[4, -1, 1, 2, 3, 4]]) 
print(df.levels)
print(df)

输出结果:

[[nan, 2, NaT, None, 5]]

MultiIndex([(  5,),
            (nan,),
            (  2,),
            (nan,),
            (nan,),
            (  5,)],
           )

上述代码中,levels

参数用来创建层级索引,这里只有一层,该层的索引值分别是 np.nan, 2, NaT, None, 5;codes

表示按参数值对层级索引值排序(与 levels 中的值相对应),也就说 codes 中数值是 leves 序列的下标索引。需要注意,这里的 -1 代表 NaN。

2) 从元组创建

通过 from_tuples() 实现从元组创建分层索引。

#创建元组序列
arrays = [['it', 'it', 'of', 'of', 'for', 'for', 'then', 'then'], 
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] 
#使用zip()函数创建元组
tuples = list(zip(*arrays)) 
print(tuples)

输出结果如下:

[('it', 'one'),
('it', 'two'),
('of', 'one'),
('of', 'two'),
('for', 'one'),
('for', 'two'),
('then', 'one'),
('then', 'two')]

然后使用 tuples 创建分层索引,如下所示:

import pandas as pd
#创建了两层索引,并使用names对它们命名 
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
print(index)

输出结果:

MultiIndex([(  'it', 'one'),
            (  'it', 'two'),
            (  'of', 'one'),
            (  'of', 'two'),
            ( 'for', 'one'),
            ( 'for', 'two'),
            ('then', 'one'),
            ('then', 'two')],
           names=['first', 'second'])

3) 从DataFrame对象创建

通过 from_frame() 创建分层索引,示例如下:

#首先创建一个 DataFrame。
import pandas as pd
df = pd.DataFrame([['bar', 'one'], ['bar', 'two'],
                   ['foo', 'one'], ['foo', 'two']],
                  columns=['first', 'second'])
#然后使用 from_frame()创建分层索引。
index = pd.MultiIndex.from_frame(df)
#将index应用于Series
s=pd.Series(np.random.randn(4), index=index)
print(s)

输出结果:

first  second
bar    one       1.151928
       two      -0.694435
foo    one      -1.701611
       two      -0.486157
dtype: float64

4) 笛卡尔积创建

笛卡尔积(又称直积)是数学运算的一种方式,下面使用 from_product() 笛卡尔积创建分层索引。

import pandas as pd
#构建数据
numbers = [0, 1, 2]
language = ['Python', 'Java']
#经过笛卡尔积处理后会得到6中组合方式
index = pd.MultiIndex.from_product([numbers, language],names=['number', 'language'])
#将分层索引对象应用于Series
dk_er=pd.Series(np.random.randn(6), index=index)
print(dk_er)

输出结果:

number  language
0       Python     -0.319739
        Java        1.599170
1       Python     -0.010520
        Java        0.262068
2       Python     -0.124177
        Java        0.315120
dtype: float64

5) 数组创建分层索引

通过 from_array() 方法,同样可以创建分层索引。示例如下:

import pandas as pd
df=pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'],[1, 2, 1, 2]])
df

输出结果:

MultiIndex([('a', 1),
            ('a', 2),
            ('b', 1),
            ('b', 2)],
           )

通过 set_index() 可以将 DataFrame 的已有列的标索设置为 index 行索引,示例如下:
import pandas as pddf= pd.DataFrame({'a': range(5), 'b': range(5, 0, -1),                  'c': ['one', 'one', 'one', 'two', 'two'],                  'd': [0, 1, 2, 0, 1]})print(df)df1=df.set_index(['a','d'],drop=False)print(df1)df1=df.set_index(['a','d'],drop=False,append=Ture)print(df2)

输出结果:

转换前:
   a  b    c  d
0  0  5  one  0
1  1  4  one  1
2  2  3  one  2
3  3  2  two  0
4  4  1  two  1
转换后:
     a  b    c  d
a d             
0 0  0  5  one  0
1 1  1  4  one  1
2 2  2  3  one  2
3 0  3  2  two  0
4 1  4  1  two  1
带append参数:
       a  b    c  d
  a d            
0 0 0  0  5  one  0
1 1 1  1  4  one  1
2 2 2  2  3  one  2
3 3 0  3  2  two  0
4 4 1  4  1  two  1

应用分层索引

通过 set_index() 将列索引转换为了分层行索引,其中 drop=False 表示更新索引的同时,不删除 a、d 列;同时,该函数还提供了一个 append = Ture 参数表示不添加默认的整数索引值(0到4)

分层索引切片取值

下面讲解分层索引切片取值操作,示例如下:

1) 分层行索引操作
import pandas as pd
#构建多层索引
tuple = [('湖人',2008),('步行者',2008),
      ('湖人',2007),('凯尔特人',2007),
   ('篮网',2007),('热火',2008)]
salary = [10000,20000,11000,30000,19000,22000]
#其次应用于DataFrame
index = pd.MultiIndex.from_tuples(tuple)
s = pd.Series(salary, index=index)
print(s)
#切片取值
print(s['湖人',2007])
print(s['湖人'])
print(s[:,2008])
#比较value
print(s[s<=20000])

输出结果:

湖人    2008    10000
步行者   2008    20000
湖人    2007    11000
凯尔特人  2007    30000
篮网    2007    19000
热火    2008    22000
dtype: int64

湖人队2007年工资:
11000

湖人队的工资:
2008    10000
2007    11000
dtype: int64

2008年所有队伍工资:
湖人     10000
步行者    20000
热火     22000
dtype: int64

小于等于20000的年份和队伍:
湖人   2008    10000
步行者  2008    20000
湖人   2007    11000
篮网   2007    19000
dtype: int64

2) 行、列多层索引操作

下面看一种更加复杂的情况,就是行、列同时存在多层索引时候,应该如何通过切片取值。示例如下:

df = pd.DataFrame(np.arange(1,13).reshape((4, 3)),
               index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
               columns=[['Jack', 'Jack', 'Helen'],
              ['Python', 'Java', 'Python']])
#选择同一层级的索引,切记不要写成['Jack','Helen']
print(df[['Jack','Helen']])
#在不同层级分别选择索引
print(df['Jack','Python'])
#iloc整数索引
print(df.iloc[:3,:2])
#loc列标签索引
print(df.loc[:,('Helen','Python')])

输出结果:

      Jack       Helen
    Python Java Python
a 1      1    2      3
  2      4    5      6
b 1      7    8      9
  2     10   11     12

a  1     1
   2     4
b  1     7
   2    10
Name: (Jack, Python), dtype: int32

      Jack    
    Python Java
a 1      1    2
  2      4    5
b 1      7    8

a  1     3
   2     6
b  1     9
   2    12
Name: (Helen, Python), dtype: int32

交换层和层排序

1) 交换层

通过 swaplevel() 方法轻松地实现索引层交换,示例如下:

import pandas as pd
frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
                  index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
                  columns=[['Ohio', 'Ohio', 'Colorado'],
                           ['Green', 'Red', 'Green']])
#设置index的levels名称                         
frame.index.names = ['key1', 'key2']
#设置columns的levels名称
frame.columns.names = ['state','color']
#交换key1层与key层
frame.swaplevel('key1','key2')

输出结果:

state      Ohio     Colorado
color     Green Red    Green
key2 key1                  
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11

2) 层排序

通过 sort_index() 的

level

参数实现对层的排序。下面示例,按“key1”的字母顺序重新排序。

import pandas as pd
frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
                  index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
                  columns=[['Ohio', 'Ohio', 'Colorado'],
                           ['Green', 'Red', 'Green']])
#设置index的levels的名称,key1 与 key2分别对应不同的层                         
frame.index.names = ['key1', 'key2']
#设置columns的levels的名称
frame.columns.names = ['state','color']
print(frame.sort_index(level='key1'))

输出结果:

state      Ohio     Colorado
color     Green Red    Green
key1 key2                  
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

34.spandas执行类似sql操作

我们知道,使用 SQL 语句能够完成对 table 的增删改查操作,Pandas 同样也可以实现 SQL 语句的基本功能。本节主要讲解 Pandas 如何执行 SQL 操作。

首先加载一个某连锁咖啡厅地址分布的数据集,通过该数据集对本节内容进行讲解。

import pandas as pdurl = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'coffee_df=pd.read_excel(url)coffee_df.head()

输出结果如下:

   address                                    category           id                     tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座  娱乐休闲:咖啡厅  1874263549184796345   010-85179080
1 北京市东城区东直门内大街277-31号档口              娱乐休闲:咖啡厅  1461638360847848424   400-669-2002
2 北京市东城区王府井东街8号澳门中心L117商场102室      娱乐休闲:咖啡厅  1308505235389562852   400-010-0100
3 北京市东城区前门大街108号底商                    娱乐休闲:咖啡厅   15442844740539053384
4 北京市东城区和平里西街51号雍和宫壹中心A座负一层     娱乐休闲:咖啡厅    2357391864111641256  4000100100

SELECT

在 SQL 中,SELECT 查询语句使用,把要查询的每个字段分开,当然您也可以使用*来选择所有的字段。如下所示:

SELECT address, category, id, tel FROM tips LIMIT 5;

对于 Pandas 而言,要完成 SELECT 查询,需要把数据集每一列(columns)的名称传递给 DataFrame 对象。如下所示:

coffee_df[['address','category','id','tel']].head()

下面代码是 Pandas 执行 SELECT 查询的完整程序:

import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
#只查看尾3行
coffee_df[['address', 'category', 'id', 'tel']].tail(3)

输出结果如下:

      address                                           category         id                    tel
28912 新疆维吾尔自治区北屯市芳园路69-2-12                 娱乐休闲:咖啡厅   7443833746160692626
28913 新疆维吾尔自治区北屯市北屯购物公园7-1-7               娱乐休闲:咖啡厅  15288143245642241877
28914 新疆维吾尔自治区可克达拉市人民西路与育才路交叉口西北50米 娱乐休闲:咖啡厅   17884214706482955

假如您传入的是一个空列表, 那最终结果将输出所有的行索引标签。

WHERE

SQL 中的条件查询是通过 WHERE 子句完成的。格式如下所示:

SELECT * FROM coffee_df WHERE tel = '010-85179080';

然而 DataFrame 可以通过多种方式实现条件筛选,最直观的方法是通过布尔索引:

coffee_df[coffee_df['id'] == '1461638360847848424']

完整程序如下:

import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
coffee_df[coffee_df['tel'] == '400-010-0100'].head(5)

输出结果如下:

address                                        category      id                  tel
2 北京市东城区王府井东街8号澳门中心L117商场102室      娱乐休闲:咖啡厅 1308505235389562852 400-010-0100
5 北京市东城区崇文门外大街3号崇文新世界百货一期南门一层  娱乐休闲:咖啡厅 3294587167648650139 400-010-0100
6 北京市东城区东四北大街265号文化金融大厦1层大堂       娱乐休闲:咖啡厅 3046481700882245722 400-010-0100
7 北京市东城区珠市口东大街2号丰泰中心1层              娱乐休闲:咖啡厅 3218554253235914037 400-010-0100
9 北京市东城区怡生健身居然大厦店休闲区                娱乐休闲:咖啡厅 3141197020974020427 400-010-0100

上面的语句通过布尔运算将 True 或 False 对象传递给 DataFrame 对象,然后返回所有为 True 的行。

GroupBy

在 SQL 语句中,通过 GroupBy 操作可以获取 table 中一组记录的计数。示例如下:

SELECT id, count(*) FROM tips GROUP BY id;

而 Pandas 可通过以下代码实现:

coffe_df.groupby('id').size()

完整的程序如下所示:

import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
print(coffee_df.groupby('id').size())

输出结果:

id
938817537566269         1
1343221331916894        1
2068013370184103        1
2147497429057385        1
4021181356852391        1
                       ..
18443951046631684378    1
18444337559943971606    1
18444494959108924300    1
18445005868173060838    1
18446259420330511125    1
Length: 23240, dtype: int64

LIMIT

在 SQL 中,LIMIT 语句主要起到限制作用,比如查询前 n 行记录:

SELECT * FROM coffee_df LIMIT n;

而在 Pandas 中,您可以通过 head() 来实现(默认前 5 行),示例如下:

import pandas as pd
url = 'C:/Users/Administrator/Desktop/coffee/kafei.xlsx'
coffee_df=pd.read_excel(url)
coffee_df[['address',  'tel']].head(3)

输出结果:

  address                                       tel
0 北京市东城区南竹竿胡同2号1幢2层30212号银河SOHOC座   010-85179080
1 北京市东城区东直门内大街277-31号档口               400-669-2002
2 北京市东城区王府井东街8号澳门中心L117商场102室       400-010-0100

35.Pandas和NumPy的比较

创建数组(np.array)

数组的主要作用是在一个变量中存储多个值。NumPy 可以轻松地处理多维数组,示例如下:

import numpy as np
arr = np.array([2, 4, 6, 8, 10, 12])
print(type(arr))
print ("打印新建数组: ",end="")
#使用for循环读取数据 
for l in range (0,5): 
    print (arr[l], end=" ")

输出结果:


打印新建数组: 2 4 6 8 10

虽然 Python 本身没有数组这个说法,不过 Python 提供一个 array 模块,用于创建数字、字符类型的数组,它能够容纳字符型、整型、浮点型等基本类型。示例如下:

import array
#注意此处的 'l' 表示有符号int类型 
arr = array.array('l', [2, 4, 6, 8, 10, 12])
print(type(arr))
print ("新建数组: ",end="") 
for i in range (0,5): 
    print (arr[i], end=" ") 

输出结果:


新建数组: 2 4 6 8 10

重塑数组形状(reshape变维)

在不改变数组数据的情况下,对数组进行变形操作,即改变数组的维度,比如 23(两行三列)的二维数组变维 32(三行两列)的二维数组。变形操作可以通过 reshape() 函数实现。

示例如下:

import numpy as np 
arr = np.arange(16) 
print("原数组: \n", arr) 
arr = np.arange(16).reshape(2, 8) 
print("\n变形后数组:\n", arr) 
arr = np.arange(16).reshape(8 ,2) 
print("\n变形后数组:\n", arr)

输出结果:

原数组:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]

变形后数组:
[[ 0  1  2  3  4  5  6  7]
[ 8  9 10 11 12 13 14 15]]

变形后数组:
[[ 0  1]
[ 2  3]
[ 4  5]
[ 6  7]
[ 8  9]
[10 11]
[12 13]
[14 15]]

Pdans与NumPy区别

Pandas 和 NumPy 被认为是科学计算与机器学习中必不可少的库,因为它们具有直观的语法和高性能的矩阵计算能力。下面对 Pandas 与 NumPy 进行简单的总结,如下表所示:

比较项 Pandas NumPy
适应性 Pandas主要用来处理类表格数据。 NumPy 主要用来处理数值数据。
工具 Pandas提供了Series和DataFrame数据结构。 NumPy 构建了 ndarray array来容纳数据。
性能 Pandas对于处理50万行以上的数据更具优势。 NumPy 则对于50万以下或者更少的数据,性能更佳。
内存利用率 与 NumPy相比,Pandas会消耗大量的内存。 NumPy 会消耗较少的内存。
对象 Pandas 提供了 DataFrame 2D数据表对象。 NumPy 则提供了一个多维数组 ndarray 对象

转换ndarray数组

36.Pandas使用的注意事项

你可能感兴趣的:(pandas)