FOC控制之CLARK和PARK变换

CLARK变换

CLARK变换将三相系统(在 abc 坐标系中)的时域分量转换为正交静止坐标系 (αβ) 中的两个分量

转换公式

{ U α = U α − cos ⁡ ( π / 3 ) U b − cos ⁡ ( π / 3 ) U c U β = sin ⁡ ( π / 3 ) U b − sin ⁡ ( π / 3 ) U c \begin{dcases} U_{α}=U_{α}-\cos(\pi/3)U_{b}-\cos(\pi/3)U_{c} \\ U_{β}=\sin(\pi/3)U_{b}-\sin(\pi/3)U_{c} \end{dcases} {Uα=Uαcos(π/3)Ubcos(π/3)UcUβ=sin(π/3)Ubsin(π/3)Uc

转换矩阵

∣ U α U β ∣ = K ∣ 1 − 1 / 2 − 1 / 2 0 ( 3 / 2 − ( 3 / 2 ∣ ∣ U a U b U c ∣ \begin{vmatrix} U_{α} \\ U_{β} \end{vmatrix}=K \begin{vmatrix} 1 & -1/2 & -1/2 \\ 0 & \sqrt{\mathstrut 3}/2 & -\sqrt{\mathstrut 3}/2 \end{vmatrix}\begin{vmatrix} U_{a} \\ U_{b} \\ U_{c} \end{vmatrix} UαUβ =K 101/2(3 /21/2(3 /2 UaUbUc

CLARK逆变换

2轴电流到3轴电流

变换公式

{ U a = U α U b = cos ⁡ ( 2 π / 3 ) U α + sin ⁡ ( π / 3 ) U β U c = cos ⁡ ( 2 π / 3 ) U α − sin ⁡ ( π / 3 ) U β \begin{dcases} U_{a} = U_{\alpha} \\ U_{b} = \cos(2\pi/3)U_{\alpha}+\sin(\pi/3)U_{\beta} \\ U_{c} = \cos(2\pi/3)U_{\alpha}-\sin(\pi/3)U_{\beta} \end{dcases} Ua=UαUb=cos(2π/3)Uα+sin(π/3)UβUc=cos(2π/3)Uαsin(π/3)Uβ

变换矩阵

∣ U a U b U c ∣ = ∣ 1 0 − 1 / 2 ( 3 / 2 − 1 / 2 − ( 3 / 2 ∣ ∣ U α U β ∣ \begin{vmatrix} U_{a} \\ U_{b} \\ U_{c} \end{vmatrix}=\begin{vmatrix} 1 & 0 \\ -1/2 & \sqrt{\mathstrut 3}/2 \\ -1/2 & -\sqrt{\mathstrut 3}/2 \end{vmatrix}\begin{vmatrix} U_{\alpha} \\ U_{\beta} \end{vmatrix} UaUbUc = 11/21/20(3 /2(3 /2 UαUβ

PARK变换

PARK变换将 αβ 静止坐标系中的两个分量转换为一个正交旋转坐标系 (dq)

转换公式

{ U d = U α cos ⁡ ( θ ) + U β sin ⁡ ( θ ) U q = − U α sin ⁡ ( θ ) + U β cos ⁡ ( θ ) \begin{dcases} U_{d} = U_{\alpha}\cos(\theta) + U_{\beta}\sin(\theta) \\ U_{q} = -U_{\alpha}\sin(\theta) + U_{\beta}\cos(\theta) \end{dcases} {Ud=Uαcos(θ)+Uβsin(θ)Uq=Uαsin(θ)+Uβcos(θ)

转换矩阵

[ U d U q ] = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ U α U β ] \begin{bmatrix} U_{d} \\ U_{q} \end{bmatrix}=\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}\begin{bmatrix} U_{\alpha} \\ U_{\beta} \end{bmatrix} [UdUq]=[cos(θ)sin(θ)sin(θ)cos(θ)][UαUβ]

PARK逆变换

旋转坐标系到静止坐标系

变换公式

{ U α = U d cos ⁡ ( θ ) − U q sin ⁡ ( θ ) U β = U d sin ⁡ ( θ ) + U q cos ⁡ ( θ ) \begin{dcases} U_{\alpha} = U_{d}\cos(\theta) - U_{q}\sin(\theta) \\ U_{\beta} = U_{d}\sin(\theta) + U_{q}\cos(\theta) \end{dcases} {Uα=Udcos(θ)Uqsin(θ)Uβ=Udsin(θ)+Uqcos(θ)

变换矩阵

[ U α U β ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ U d U q ] \begin{bmatrix} U_{\alpha} \\ U_{\beta} \end{bmatrix}=\begin{bmatrix} \cos(\theta) & - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}\begin{bmatrix} U_{d} \\ U_{q} \end{bmatrix} [UαUβ]=[cos(θ)sin(θ)sin(θ)cos(θ)][UdUq]

你可能感兴趣的:(FOC控制,FOC控制)