基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换

2 数据清洗、转换

此实验使用S3作为数据源

ETL:

E    extract         输入
T    transform     转换
L    load             输出

大纲

  • 2 数据清洗、转换
    • 2.1 架构图
    • 2.2 数据清洗
    • 2.3 编辑脚本
      • 2.3.1 连接数据源(s3)
      • 2.3.2. 数据结构转换
      • 2.3.2 数据结构拆分、定义
      • 2.3.3 清洗后的数据写入新s3
      • 2.3.4 运行作业
    • 2.4 数据分区
      • 2.4.1 编辑脚本
      • 2.4.2 运行脚本
    • 2.5 总结
  • 作者

2.1 架构图

基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第1张图片

2.2 数据清洗

此步会将S3中的原始数据清洗成我们想要的自定义结构的数据。之后,我们可通过APIGateway+Lambda+Athena来实现一个无服务器的数据分析服务。

步骤 图例
1、入口 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第2张图片
2、创建Job(s3作为数据源,则Type选择Spark,若为Kinesis等,选择Stream Spark) 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第3张图片
3、IAM角色需要有s3与Glue的权限 在这里插入图片描述
4、选择s3脚本位置,若已经完成脚本的编写工作,则可以选择第二项或第三项,若无则Glue会提供默认脚本 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第4张图片
5、安全配置参数 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第5张图片建议:添加参数–enable-auto-scaling为true。每次在我们执行Job任务时,会根据运行 ETL 任务的数据处理单元(DPU)的个数来分配动态IP,在我们子网的动态IP数低于DPU数时,Job将会执行失败。此参数将会动态分配IP。
6、数据源() 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第6张图片
7、数据目标(我们会将清洗后的数据存储到新的s3桶) 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第7张图片
8、设计架构(在本案例中,我们会自定义脚本。所以不再在此处设计架构)(此处设计后,脚本会自动生成相关代码) 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第8张图片
9、保存 基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第9张图片

2.3 编辑脚本

脚本中的args参数的键值需要从Job的安全配置参数中定义

2.3.1 连接数据源(s3)

#数据源
datasource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "datasource")

2.3.2. 数据结构转换

mapped_readings = ApplyMapping.apply(frame = datasource, mappings = [("lclid", "string", "meter_id", "string"), \
                                                                     ("datetime", "string", "reading_time", "string"), \
                                                                     ("KWH/hh (per half hour)", "double", "reading_value", "double")], \
                                     transformation_ctx = "mapped_readings")

2.3.2 数据结构拆分、定义

mapped_readings_df = DynamicFrame.toDF(mapped_readings)

mapped_readings_df = mapped_readings_df.withColumn("obis_code", lit(""))
mapped_readings_df = mapped_readings_df.withColumn("reading_type", lit("INT"))

reading_time = to_timestamp(col("reading_time"), "yyyy-MM-dd HH:mm:ss")
mapped_readings_df = mapped_readings_df \
    .withColumn("week_of_year", weekofyear(reading_time)) \
    .withColumn("date_str", regexp_replace(col("reading_time").substr(1,10), "-", "")) \
    .withColumn("day_of_month", dayofmonth(reading_time)) \
    .withColumn("month", month(reading_time)) \
    .withColumn("year", year(reading_time)) \
    .withColumn("hour", hour(reading_time)) \
    .withColumn("minute", minute(reading_time)) \
    .withColumn("reading_date_time", reading_time) \
    .drop("reading_time")

2.3.3 清洗后的数据写入新s3

# write data to S3
filteredMeterReads = DynamicFrame.fromDF(mapped_readings_df, glueContext, "filteredMeterReads")

s3_clean_path = "s3://" + args['clean_data_bucket']

glueContext.write_dynamic_frame.from_options(
    frame = filteredMeterReads,
    connection_type = "s3",
    connection_options = {"path": s3_clean_path},
    format = "parquet",
    transformation_ctx = "s3CleanDatasink")

2.3.4 运行作业

    执行成功后,状态将变为"SUCCESS",失败将会给出失败信息,可在CloudWatch 中查看详情

基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第10张图片

基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第11张图片


清洗后的数据保存到了s3


基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第12张图片
数据清洗完毕后,可通过上一篇中的爬网程序步骤,将清洗后的数据的结构创建表到数据目录中,
此时我们可以使用Athena对清洗后的数据进行分析。

2.4 数据分区

接下来我们对数据进行分区处理(此处只提供了按天分区
重新进行数据清洗中的创建Job操作后,重写脚本

2.4.1 编辑脚本

连接数据源。表为上一步最后重新爬取生成的新表。

cleanedMeterDataSource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "cleanedMeterDataSource")

根据type与data_str分区

business_zone_bucket_path_daily = "s3://{}/daily".format(args['business_zone_bucket'])

businessZone = glueContext.write_dynamic_frame.from_options(frame = cleanedMeterDataSource, \
    connection_type = "s3", \
    connection_options = {"path": business_zone_bucket_path_daily, "partitionKeys": ["reading_type", "date_str"]},\
    format = "parquet", \
    transformation_ctx = "businessZone")

2.4.2 运行脚本

分区后的数据结果:
基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(二)——数据清洗、转换_第13张图片
再次创建、运行爬网程序,将会在数据目录中生成新的分区表。

2.5 总结

到这一步,我们已经使用Glue ETL对s3桶中的数据进行了清洗、分区操作。在进行上篇中的Athena操作后,我们已经可以通过Athena直接查询到清洗、分区后的数据集了。
接下来,我们会通过使用APIGateway+Lambda+Athena来构建一个无服务器的数据查询分析服务。

作者

Zikuo Su

你可能感兴趣的:(AWS云,etl,数据分析,大数据,serverless,spark)