- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- [论文阅读] 人工智能 + 软件工程 | 揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究
张较瘦_
前沿技术论文阅读人工智能软件工程
揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究论文:WhatMakesChatGPTEffectiveforSoftwareIssueResolution?AnEmpiricalStudyofDeveloper-ChatGPTConversationsinGitHubarXiv:2506.22390WhatMakesChatGPTEffectiveforSoftwareIssueRe
- [论文阅读] 人工智能 + 软件工程 | 代码注释不一致问题研究:从数据革新到端到端解决方案
张较瘦_
前沿技术论文阅读人工智能软件工程
代码注释不一致问题研究:从数据革新到端到端解决方案原文:CCISOLVER:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyarXiv:2506.20558CCISolver:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyRe
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- 人类编程时代即将终结?OpenAI首席产品官预测AI将在今年底全面超越人类程序员
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读近日,OpenAI首席产品官KevinWeil在接受采访时表示,人工智能的发展速度远超预期,今年底就有可能在编程领域永久性地超越人类程序员。这一观点立即引发了行业热议,也让程序员们对未来产生了深刻的思考。人工智能的进展速度远超想象在与VarunMayya和TanmayBhat共同主持的YouTube节目《O
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- FastGPT与MCP:解锁AI新时代的技术密码
挑战者666888
AI模型应用实战迁移学习集成学习文心一言
一、AI浪潮中的新星:FastGPT与MCP登场在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的图像识别系统,AI的应用无处不在,而其中的关键技术——语言模型和集成平台,更是备受关注。FastGPT和MCP(Multi-ComponentPlatform)作为这一领域的新兴代表,正逐渐崭露头角,为AI的发展注入新的活力。FastGPT,以其高效的推理
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- 提升首屏加载的秘密武器:一文讲透 CDN 加速核心逻辑
网罗开发
实战源码前端jsonjavascript
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 量化AI价值的30个关键指标
mao_feng
人工智能AI
摘要:量化AI的战略价值人工智能(AI)成功集成到业务运营中超越了单纯的技术部署;它需要一种严格、可量化的方法来展示其价值。本报告系统地分类并解释了评估AI优势的基本指标,从核心模型性能到总体战略和道德考虑因素。必须制定多方面的衡量策略,将技术AI指标与运营效率、客户体验、财务绩效、战略优势和负责任的AI实践等有形业务成果直接联系起来。稳健的关键绩效指标(KPI)不仅仅是问责制的工具;它们是持续改
- 信创产品合规认证的一般流程,标准化产品、项目型产品
极创信息
健康医疗深度学习opencvsqliteeclipsegithubgit
信创产品合规认证流程分为标准化产品(通用产品)和项目型产品(特定项目交付)。核心流程概述基础适配与互认选择适配环境:确定目标适配的国产CPU架构(鲲鹏、飞腾、龙芯、兆芯、海光、申威等)、操作系统(麒麟、统信UOS、中科方德等)、数据库、中间件等。产品适配:在选定的信创环境下进行安装、部署、功能测试、性能调优等。获取证书:1.信创产品兼容性互认证证书:这是第一步也是最关键的证书。通常由产品厂商与基础
- 【AI大模型】23、构建你的西部世界:AI小镇具身智能实战指南
无心水
AI大模型人工智能AI小镇搭建具身智能实战智能体系统架构提示语工程优化虚拟社会构建AI大模型
引言:从代码到虚拟社会的奇妙旅程在人工智能领域,具身智能的发展正引领着一场新的革命。当我们谈论构建一个类似《西部世界》的虚拟社会时,我们不仅在创造一个数字游乐场,更是在探索智能体如何在模拟环境中展现出类似人类的认知、社交和决策能力。本文将带领你踏上一段激动人心的旅程,从底层架构到上层应用,全面解析如何利用提示语工程构建一个充满活力的AI小镇。想象一下,你将成为这个虚拟世界的造物主,通过精心设计的提
- 九章数学体系:定义域无界化——AI鲁棒性的“隐形杀手“
九章数学体系
数学建模拓扑学人工智能神经网络
九章数学体系:定义域无界化——AI鲁棒性的"隐形杀手"摘要传统人工智能模型在面对边缘场景时常常表现出鲁棒性不足的问题,本文深入分析发现,这种现象的本质根源在于模型缺乏显式的定义域约束,导致无界化假设成为影响AI鲁棒性的"隐形杀手"。文章系统阐述了无界假设如何引发对抗样本脆弱性和数值不稳定等核心问题,并引入九章数学体系的定义域约束理论,为解决这些问题提供了全新的数学视角和工程实现路径。研究表明,通过
- 从单一设备到万物互联:鸿蒙生态崛起的未来之路
王子良.
经验分享harmonyos华为
目录一、引言:开启智能时代的钥匙二、鸿蒙生态概述:跨设备协同的核心价值三、开发者机遇与挑战:抓住鸿蒙崛起的机会四、鸿蒙生态崛起的前景:万物互联的未来五、开发者在鸿蒙生态中的实践机遇与挑战1.跨设备开发的机遇2.与人工智能和物联网结合的创新空间3.持续创新与生态完善的挑战六、鸿蒙生态未来的多维发展:智能硬件与大数据的深度结合1.智能硬件与大数据的结合2.在智能家居与城市管理中的应用3.行业领域的深度
- 考取华为HCIE-AI有什么用?
博睿谷IT99_
华为人工智能华为认证职业规划
在人工智能技术重塑各行各业的浪潮中,掌握核心AI能力成为专业人士的制胜关键。华为推出的HCIE-AISolutionArchitect(华为认证ICT专家-AI解决方案架构师),正是面向这一领域顶尖人才设立的最高级别认证。主要是为了培养和认证掌握人工智能解决方案架构、设计与应用知识,具备大模型业务场景分析、大模型训练与微调、模型推理部署能力的专家级人才。一、HCIE-AI:专家级能力的权威认证HC
- 多模态实操第一弹:多模态AI是什么?能做什么?
江凯吴杰
多模态的尝试人工智能
多模态AI专栏第一期:多模态人工智能概述与应用你是否想过,AI如何像人一样同时"看、听、说"?本期专栏将带你深入了解多模态AI的核心原理、发展脉络、关键技术、典型应用,并为后续实战打下坚实基础。最后,我们将详细介绍本系列所用的ERIT数据集及其任务背景。目录1.什么是多模态AI?2.多模态AI的发展历程3.多模态AI的核心技术4.多模态AI的应用场景5.多模态AI的挑战与机遇6.专栏预告与ERIT
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研
Yolo566Q
chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等
xiao5kou4chang6kai4
人工智能深度学习机器学习rnn语言模型lstm深度学习机器学习人工智能DeepSeek
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 十分钟了解人工智能的过去、现在与未来
ithadoop
人工智能人工智能
十分钟了解人工智能的过去、现在与未来人工智能(AI)作为重塑人类社会的技术革命,正以前所未有的速度改变着我们的工作方式、生活方式和思维方式。从1943年人工神经元模型的提出,到2025年AI应用场景的全面爆发,AI发展经历了多个关键阶段。在接下来的十分钟里,我们将通过图文解说,快速了解AI从萌芽到现在的历程,以及未来可能带来的机遇与挑战。一、人工智能的过去:从理论奠基到技术突破1.萌芽阶段(194
- Pytest自动化测试框架pytest-xdist分布式测试插件(超详细)
一个小小的测试人
pytest分布式职场和发展功能测试软件测试自动化测试
平常我们功能测试用例非常多时,比如有1千条用例,假设每个用例执行需要1分钟,如果单个测试人员执行需要1000分钟才能跑完;当项目非常紧急时,会需要协调多个测试资源来把任务分成两部分,于是执行时间缩短一半,如果有10个小伙伴,那么执行时间就会变成十分之一,大大节省了测试时间;为了节省项目测试时间,10个测试同时并行测试,这就是一种分布式场景;同样道理,当我们自动化测试用例非常多的时候,一条条按顺序执
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
asyxchenchong888
chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 高效执行自动化用例:分布式执行工具pytest-xdist实战
测试界兮兮
软件测试自动化分布式pytest压力测试单元测试功能测试程序人生
01声明在介绍pytest-xdist时,不讲任何原理,需要看原理的请移至官方:pytest-xdist·PyPI当我们自动化测试用例非常多的时候,一条条按顺序执行会非常慢,pytest-xdist的出现就是为了让自动化测试用例可以分布式执行,从而节省自动化测试时间,pytest-xdist是属于进程级别的并发。pytest-xdist插件在测试过程中可以使我们的测试用例一起并行测试,运行情况是根
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
科研的力量
人工智能ChatGPTchatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 探索 AI 系统提示与模型资源库:`system-prompts-and-models-of-ai-tools`
几道之旅
人工智能智能体及数字员工人工智能
在当今的人工智能领域,系统提示和工具模型的优化与应用对于提升AI助手的性能和响应质量至关重要。x1xhlol开源的system-prompts-and-models-of-ai-tools仓库为开发者们提供了一个丰富的资源集合,涵盖了多种AI工具的系统提示、工具和模型。仓库概述这个仓库包含了超过7500行的代码和文档,详细介绍了多个知名AI工具的系统提示和相关模型,其中包括FULLv0、Curso
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 多模态AI:让机器像人一样“全感官”理解世界
Echo_Wish
前沿技术人工智能人工智能
多模态AI:让机器像人一样“全感官”理解世界咱们人类理解世界,从来不是只靠单一感官:眼睛看到画面,耳朵听到声音,皮肤感受到温度,嘴巴尝到味道,甚至鼻子闻到气味。正是这多感官的“多模态”输入,构筑了我们对复杂世界的深刻认知。而人工智能领域的多模态学习(MultimodalLearning),正是让机器拥有“多感官”理解能力的技术突破。今天,我想跟大家聊聊:多模态学习为何重要?当前有哪些创新模型?如何
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite