- Python Pandas 如何进行数据分组统计
Python编程之道
Python人工智能与大数据Python编程之道pythonpandas网络ai
PythonPandas如何进行数据分组统计关键词:PythonPandas、数据分组、groupby、聚合函数、数据透视表、数据统计、数据分析摘要:本文将深入探讨如何使用PythonPandas库进行高效的数据分组统计操作。我们将从基础概念入手,详细讲解groupby机制的原理和使用方法,介绍各种聚合函数的应用,探讨高级分组技巧,并通过实际案例展示如何解决复杂的数据分析问题。文章还将涵盖性能优化
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- 基于MATLAB的资源优化与工期固定-资源均衡分析方法研究【附代码】
拉勾科研工作室
matlab开发语言
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)资源均衡优化相关理论与问题分类在现代工程项目中,资源的合理分配和使用是确保项目按时完成、成本可控的关键因素。资源均衡优化作为项目管理中的核心环节,旨在通过调整资源的使用方案,使资源消耗在整个工期内尽可能平稳,避免
- 医学图像增强的层级化模糊与虚拟仪器无参考质量评价研究【附代码】
拉勾科研工作室
计算机视觉图像处理人工智能
算法与建模领域的探索者|专注数据分析与智能模型设计✨擅长算法、建模、数据分析matlab、python、仿真✅具体问题可以私信或查看文章底部二维码✅感恩科研路上每一位志同道合的伙伴!(1)层级模糊隶属度的X光医学图像增强算法针对X光医学图像普遍存在的对比度差、细节模糊等问题,本算法提出了一种基于层级模糊隶属度的增强方法。该方法的核心思想在于利用拉普拉斯金字塔分解图像,并在多尺度下分层计算模糊隶属度
- Python爬虫实战:用Tushare和Baostock爬取股票历史数据及K线图与技术指标计算
在金融数据分析和量化交易中,股票历史数据的获取是进行技术分析、回测和策略研究的第一步。传统上,投资者需要依赖付费数据服务,然而如今,借助Python强大的爬虫工具和开源数据接口,我们能够轻松地爬取免费的历史股票数据,并结合K线图与技术指标来进行深入分析。Tushare和Baostock是两个非常流行的开源金融数据接口。Tushare提供了丰富的国内外金融数据,特别是A股市场的历史数据和实时数据,而
- [Python]-基础篇1- 从零开始的Python入门指南
踏雪无痕老爷子
Pythonpython开发语言
无论你是尚未接触编程的新手,还是想从其他语言转向Python的开发者,这篇文章都是你的入门课。一、Python是什么?Python是一种解释型、高级、通用型编程语言,以简洁明了、简单易用着称。它可以应用于网站开发、自动化脚本、数据分析、人工智能、系统操作等多种场景。二、如何安装Python步骤:访问Python官方网站选择目前最新的Python3.x版本下载Windows用户请务必勾选“AddPy
- Python爬虫实战:全方位爬取知乎学习板块问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫学习开发语言scrapy游戏
1.项目背景与爬取目标知乎是中国最大的知识问答社区,聚集了大量高质量的学习资源和经验分享。爬取知乎“学习”板块的问答数据,可以为学习资料整理、舆情分析、推荐系统开发等提供数据支持。本项目目标:爬取“学习”话题下的热门问答列表抓取每个问答的标题、作者、回答内容、点赞数、评论数等详细信息实现动态加载内容的抓取,包含图片和富文本避免被反爬机制限制,保证数据采集稳定结合数据分析,为后续应用打基础2.知乎“
- Python爬虫实战:爬取知乎问答与用户信息
Python爬虫项目
python爬虫php数据分析开发语言开源
简介随着网络信息量的爆炸,如何有效获取有价值的内容,成为了数据分析、机器学习等领域的基础之一。爬虫作为数据采集的基本工具之一,常常被用来获取互联网上的公开数据。在这篇博客中,我们将结合最新的Python爬虫技术,详细讲解如何爬取知乎问答与用户信息。本文将会介绍:Python爬虫的基础知识知乎问答网页结构分析使用Python进行知乎数据爬取爬取知乎问答内容与用户信息如何处理和存储爬取的数据使用最新的
- 为什么90%企业的AI数据分析都失败了?奥威BI给出破局方案
qq_43696218
人工智能数据分析数据挖掘
一、引言:AI数据分析在数字化转型中的核心地位在当今企业全面数字化转型的背景下,AI数据分析已成为解锁业务增长潜力的关键钥匙。然而,市场上众多AI数据分析产品常陷入“伪需求场景”,看似前沿却难以真正落地。本文将深入探讨奥威BI如何通过其AI数据分析能力,突破伪需求,实现数据价值的最大化。二、AI数据分析:伪需求场景的挑战伪需求场景的定义与表现AI数据分析领域的伪需求场景,指的是那些表面创新实则难
- BI+AI实战:我们如何用3秒完成车企供应链推演
qq_43696218
人工智能
一、BI+AI引领财务分析新纪元在财务数据分析领域,奥威BI+AI正以革命性的姿态颠覆传统。当金蝶、用友等工具仍深陷报表泥潭时,奥威BI+AI通过深度融合商业智能(BI)与人工智能(AI),实现了从滞后报表到实时洞察的飞跃。这不仅极大地提升了财务分析的效率,更为企业的战略决策提供了前所未有的精准支持。二、BI+AI的核心技术优势实时动态分析o奥威BI+AI摒弃了静态数据集,依托原始科目余额表实
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- Cursor MySQL MCP 完整操作配置指南
z日火
开发分享mcpcursormysql
概述本指南帮助您在Windows环境下配置Cursor编辑器的MySQLMCP服务器,实现通过AI助手对数据库进行完整的增删改查操作。功能特性:✅自然语言数据库查询✅智能数据插入和更新✅安全的数据删除操作✅自动数据分析和报告生成快速配置1.环境检查#检查必要组件node--version#Node.js>=16mysql--version#MySQL5.7+cursor--version#Curs
- AI助力基因数据分析:用Python玩转生命密码的秘密
Echo_Wish
前沿技术人工智能人工智能数据分析python
AI助力基因数据分析:用Python玩转生命密码的秘密说到基因数据,听起来是不是感觉有点高大上?其实,基因数据分析正变得越来越“接地气”,而AI正是这条路上的神奇钥匙。今天,咱们就用Python聊聊如何利用AI技术做基因数据分析与建模,帮你破解生命的密码,找到疾病预测、个性化医疗的新路子。一、基因数据为何如此特别?基因组测序技术让我们能够获取人体细胞内数以百万计的DNA序列变异信息。但数据量巨大、
- python做生物信息学分析_Python从零开始第五章生物信息学①提取差异基因
吴敬欣
python做生物信息学分析
目前来说,做生物信息学的人越来越多,但是我觉得目前而言做生信的主要有三类人:老本行是做实验的,做生信可能是为了辅助研究或者是为了发paper(有非常多的临床生选择趟生信这波水)主要是做生信的,主要涵盖高通量测序数据分析,组学数据分析等等,专门从事生物学数据分析的这群人,其大部分也是本科生物狗作为强大的生力军,以调包写R,python为主。那么这群人就要熟悉看各种包的tutorial以及如何进行常规
- 数据与ChatBI
ChatBI的核心是让用户用自然语言(如“帮我看看这周的销售额走势”)直接获取数据分析结果,无需懂SQL或技术细节。整个过程就像AI“听懂”你的话、理解需求、生成查询、验证执行、并可视化展示结果。首先,ChatBI的系统架构图展示了整个流程的关键步骤。它从用户输入开始,经过多个AI模块处理,最终输出交互式报表。现在来一步步解析ChatBI的工作流程。1.语音/文字输入——解放双手的起点这是什么?一
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- Jupyter完全指南:一文搞定Notebook和Lab的所有玩法
network爬虫
JupyterNotebookjupyterpythonide数据分析
Jupyter完全指南:一文搞定Notebook和Lab的所有玩法目录引言:为什么Jupyter是数据科学家的最爱Jupyter生态系统概览JupyterNotebookvsJupyterLab:选择哪一个?安装与环境配置Notebook基础操作详解Magic命令:让你的工作流更高效JupyterLab高级功能探索实战案例:数据分析项目完整流程扩展插件与自定义配置性能优化与最佳实践常见问题解答总结
- 关于电商秒杀系统中防超卖、以及高性能下单的处理方案简述
Java鼠鼠吖
java
秒杀抢购系统的成功平稳运行,有一些需要注意的知识点。1高并发,以及刷接口等黑客请求对服务端的负载冲击2高并发时带来的超卖,即商品数量的控制3高负载下,下单的速度和成功率的保证4其他以秒杀单品为例,如抢小米手机。解决方案探讨:第一步限制前端发来的请求量免费领取Java学习资料譬如定在了周二10点开启抢购,那么在之前的一周时间内,都会有预约通知,或者普通的用户浏览。通过预约量、浏览量等数据分析,大概能
- 从实验到生产:DeepSeek大模型工程化部署的关键步骤与风险控制
一ge科研小菜菜
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言:大模型部署迈入“工程化时代”随着DeepSeek等开源大语言模型(LLM)的发展,大模型不再是AI实验室的专属工具,越来越多的企业正尝试将其纳入业务生产系统,应用于客服问答、合同审查、数据分析、自动写作等场景。但模型的能力≠可用的系统。从模型下载到模型上线,中间隔着“部署的鸿沟”:资源配置、服务稳定性、响应效率、安全控制、上线合规……一
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 开发数字化绿色低碳园区系统:分阶段实施指南
Hy行者勇哥
绿色智造·产品设计与管理物联网华为云架构
目录摘要背景核心模块阶段性开发分阶段开发实施第一阶段(3-6个月):搭建核心骨架第二阶段(6-9个月):扩展功能第三阶段(9-12个月):深度定制技术选型注意事项实施计划表小结摘要数字化绿色低碳园区系统通过物联网、能源管理和数据分析等技术,实现节能减排和智慧管理。本文针对目前市场低迷,需求不振,开发资源有限的团队,提出基于低代码平台的开发策略,分为三阶段(核心骨架、功能扩展、深度优化),覆盖所有必
- Gitea 服务器监控面板的搭建
shengyin714959
笔记最高笔记服务器gitea数据库
Prometheus是一个开源的服务监控系统和时序数据库。Grafana是一个可视化的数据分析面板,它可以从Prometheus中查询时序数据,绘制漂亮的数据图表。本文作者在实践中使用Prometheus抓取和存储Gitea服务器的运行数据,并基于Grafana提供的开源数据面板创建了一个自己服务器的Gitea性能监控面板。工作原理为了更清晰地理解Prometheus的工作原理,我在下方列出了Pr
- AI测试驱动的大前端质量保障体系构建与实践
欧阳天羲
AI开发前端人工智能前端
一、引言:大前端测试的新挑战与AI破局在大前端开发规模与复杂度持续攀升的背景下,传统测试方法已难以满足快速迭代的需求。随着小程序、APP和Web应用的多端协同开发成为常态,测试覆盖率不足、执行效率低下、缺陷定位困难等问题日益凸显。AI凭借强大的数据分析与智能决策能力,为构建高效、精准的大前端质量保障体系提供了新路径。本文将结合多端项目实践,深入探讨AI在大前端测试各环节的应用,通过实际代码示例展示
- AI辅助大前端开发的性能瓶颈突破与体验优化
在大前端开发技术飞速发展的当下,应用功能日趋复杂,性能瓶颈已成为制约用户体验的关键因素。AI凭借强大的数据分析与智能决策能力,为大前端开发带来了性能优化的新思路。本文将结合小程序、APP和Web等典型开发场景,深入探讨AI在大前端性能优化中的具体应用,并通过丰富的代码示例展示实践过程。一、资源加载优化(一)智能资源预加载在大前端应用中,资源加载速度直接影响页面的启动时间。AI通过分析用户行为数据和
- 良品超市进销存管理系统设计与实现(开题报告、高质量、毕业设计、毕业论文)
AA-老高(接毕设)
计算机专业课程设计人工智能javaspringmavenspringbootspringcloud
毕业论文(设计)题目良品超市进销存管理系统设计与实现课题来源□科研R应用□教学□其它成果类别□论文R设计一、课题的研究意义选题的目的良品超市作为一家日益壮大的零售企业,面临着激烈的市场竞争和日益复杂的供应链管理。在当前的商业环境中,如何高效管理商品的进销存,降低运营成本,提高顾客满意度,已成为企业亟需解决的问题。传统的手工记录和简单的电子表格无法满足日常运营中的快速更新和数据分析需求,常常导致库存
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- AI对于普通人的影响
抬起右手
AI分享人工智能
一、当前影响(2025年)就业结构剧变岗位替代:制造业、客服、基础数据分析等重复性工作被AI加速替代,初级原画师、文案工作者失业率显著上升(裁员比例达30%)。新兴职业:AI训练师、数据标注员、伦理审计师等岗位需求激增,全球需转型技能人群超3.75亿。技能焦虑:47%岗位面临自动化风险,普通人需快速掌握人机协作能力。生活便利性提升智能家居:40%家庭实现自动化环境调节(
- WIND金融客户端Python接口文档:Python环境下的金融大数据利器
邴韵芯
WIND金融客户端Python接口文档:Python环境下的金融大数据利器【下载地址】WIND金融客户端Python接口文档WINDPY是WIND金融客户端为Python开发者提供的强大接口,支持在Python环境中便捷访问WIND金融数据库。它提供了丰富的函数和命令,涵盖历史数据、实时行情、交易操作等多种功能,适用于量化交易、数据分析等场景。无论是获取股票、基金、债券等金融产品的历史序列、分钟数
- 2025学年湖北省职业院校技能大赛 “信息安全管理与评估”赛项 样题卷(五)
2025学年湖北省职业院校技能大赛“信息安全管理与评估”赛项样题卷(五)第二部分:网络安全事件响应、数字取证调查、应用程序安全任务书任务1:应急响应(可以培训有答案)任务2:通信数据分析取证(40分)任务3:基于Windows计算机单机取证(120分)第三部分应用程序安全任务4:C代码审计(40分)第三部分:网络安全渗透、理论技能与职业素养任务一:门户网站(60分)可以培训任务二:办公系统(60分
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟