自然语言处理实战项目4-文本相似度的搜索功能,搜索文本内容

大家好,我是微学AI,今天给大家带来自然语言处理实战项目4-文本相似度的搜索功能,搜索文本内容。文本相似度搜索是一种基于自然语言处理技术,用于搜索和匹配文本内容的方法。其主要目的是将用户输入的查询内容与已有的文本数据进行比较,并找到最相似的文本数据。

本文本以目标实现为导向,实战让大家跑通文本相似度的搜索功能。

一、实现文本相似度的搜索功能步骤:

1.首先加载与处理文件夹数据,本文以txt文件为例子,批量处理。

2.然后构建文件名和文件内容的索引文件。

3.在进行文档向量化与模型构建,生成向量模型

4.加载模型进行相似度的计算并返回。

5.后续可以新增文档到向量模型,可搜索到新加的文件

自然语言处理实战项目4-文本相似度的搜索功能,搜索文本内容_第1张图片

、文本相似度的搜索功能代码:

1.构建文件搜索引擎类

mport os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pickle
from settings.app_config import project_config as fileconfig
import PyPDF2
import csv

index_file = 'index.pkl'
vectorizer_file = 'vectorizer.pkl'
index_file_path = 'file_path.pickle'

# 构建文件搜索引擎类
class FileSearchManage():
    def __init__(self):
        self.index_file_path = index_file_path
        self.index_file = index_file 
        self.vectorizer_file = vectorizer_file

    #读取文件
    def read_files(self,folder_path):
        files_data = {}
        for file_name in os.listdir(folder_path):
            if file_name.endswith(".txt"):
                with open(os.path.join(folder_path, file_name), 'r', encoding='utf-8') as f:
                    files_data[file_name] = f.read().replace('\n', '')
        return files_data


    # 保存 csv 文件
    def save_csv_files(self, folder_path,csv_path):
        # 将信息写入csv文件
        with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
            fieldnames = ['file_name', 'paragraph', 'content']
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writeheader()
            for file_name in os.listdir(folder_path):
                if file_name.endswith(".pdf"):
                    path_name, paragraph = ocr_paragraph_pdf(os.path.join(folder_path, file_name))
                    for i, pa in enumerate(paragraph):
                        pa = pa.replace('\n', '').replace(' ', '')
                        if len(pa) > 4:
                           writer.writerow({'file_name': file_name,
                                         'paragraph': i,
                                         'content': pa})

    # 读取pickle索引文件
    def read_pickle(self,index_file_path):
        with open(index_file_path, 'rb') as f:
            index = pickle.load(f)
        return index

    #分词、去除停用词 处理
    def preprocess_data(self,files_data):
        processed_data = {}
        for file_name, content in files_data.items():
            # 在这里可以对文档内容进行预处理(例如:分词、去除停用词)
            processed_data[file_name] = content
        return processed_data

    # 创建索引文件向量
    def create_tfidf_index(self,processed_data):
        vectorizer = TfidfVectorizer()
        corpus = list(processed_data.values())
        X = vectorizer.fit_transform(corpus)
        return X, vectorizer

    # 报错文件json
    def save_file(self,index_file_path,files_data):
        with open(index_file_path, 'wb') as f:
            pickle.dump(files_data, f)

    # 保存索引文件向量
    def save_index(self,index, vectorizer, index_file, vectorizer_file):
        with open(index_file, 'wb') as f:
            pickle.dump(index, f)
        with open(vectorizer_file, 'wb') as f:
            pickle.dump(vectorizer, f)

    # 加载索引文件向量
    def load_index(self,index_file, vectorizer_file):
        with open(index_file, 'rb') as f:
            index = pickle.load(f)
        with open(vectorizer_file, 'rb') as f:
            vectorizer = pickle.load(f)
        return index, vectorizer

    def preprocess_query(self,query):
        # 对查询进行预处理(例如:分词、去除停用词)
        return query

    # 文件查找函数
    def search(self,query, index, vectorizer, files_data,num):
        processed_query = self.preprocess_query(query)
        query_vector = vectorizer.transform([processed_query])
        cosine_similarities = cosine_similarity(index, query_vector)

        top_file_indices = cosine_similarities.ravel().argsort()[-int(num):][::-1]

        # print(top_file_indices)
        results = []
        for file_index in top_file_indices:
            file_name = list(files_data.keys())[file_index]
            file_content = files_data[file_name]
            similarity = cosine_similarities[file_index][0]
            results.append((file_name, file_content, similarity))

        return sorted(results, key=lambda x: x[-1], reverse=True)
        # return most_similar_file_name, most_similar_file_content

    # 文件相似度计算
    def search_similar_files(self,query,num):

        files_data = self.read_pickle(self.index_file_path)
        #processed_data = self.preprocess_data(files_data)

        index, vectorizer = self.load_index(self.index_file, self.vectorizer_file)
        result = self.search(query, index, vectorizer, files_data,num)

        result = [x[0]+" "+str(x[2]) for x in result]
        return result
        # print('File content:', result_file_content)

    # 获取文件内容
    def get_content(self,filename):
        files_data = self.read_pickle(self.index_file_path)
        result = files_data[filename]
        return result

    # 新增新的索引文件
    def add_new_file(self,file_path):
        index,vectorizer = self.load_index(self.index_file, self.vectorizer_file)
        files_data = self.read_pickle(self.index_file_path)
        content =''
        try:
            if file_path.split('.')[-1]=='txt':
                with open(file_path, 'r', encoding='utf-8') as f:
                    file_content =  f.read().replace('\n', '')
                    files_data[file_path.split('/')[-1]] = file_content

            if file_path.split('.')[-1] == 'pdf':
                with open(file_path, 'rb') as f:
                    pdf_reader = PyPDF2.PdfFileReader(f)
                    # 获取PDF文件的页数
                    num_pages = pdf_reader.numPages
                    # 创建文本文件,并将PDF文件每一页的内容写入
                    for i in range(num_pages):
                        page = pdf_reader.getPage(i)
                        text = page.extractText().replace(' ', '')
                        content = content + text
                file_content = content.replace('\n', '')
                files_data[file_path.split('/')[-1]] = file_content

            with open(self.index_file_path, 'wb') as f:
                    pickle.dump(files_data, f)

            corpus = list(files_data.values())
            X = vectorizer.fit_transform(corpus)

            with open(self.index_file, 'wb') as f:
                pickle.dump(X, f)
            with open(self.vectorizer_file, 'wb') as f:
                pickle.dump(vectorizer, f)
            return  'successful'
        except Exception as e:
            print(e)
            return 'fail'

2.构建文件夹导入函数

if __name__ == '__main__':
       
    folder_path = '文件夹的地址'  # 例如'E:/data'
   

    def create_file(folder_path):
         FileSearch = FileSearchManage()
         files_data = FileSearch.read_files(folder_path)
         processed_data = FileSearch.preprocess_data(files_data)
         FileSearch.save_file(index_file_path,processed_data)
         index, vectorizer = FileSearch.create_tfidf_index(processed_data)
         FileSearch.save_index(index, vectorizer, index_file, vectorizer_file)


    def file_search(query):

        FileSearch = FileSearchManage()
        files_data = FileSearch.read_pickle(index_file_path)
        processed_data = FileSearch.preprocess_data(files_data)
        index, vectorizer = FileSearch.load_index(index_file, vectorizer_file)
        result_file_name = FileSearch.search(query, index, vectorizer, files_data,num=5)
        print('File name:', result_file_name)


    def file_add(folder_path):
        FileSearch = FileSearchManage()
        files_data = FileSearch.read_pdf_files(folder_path)
        with open(index_file_path, 'wb') as f:
            pickle.dump(files_data, f)
        processed_data =  FileSearch.preprocess_data(files_data)
        index, vectorizer = FileSearch.create_tfidf_index(processed_data)
        FileSearch.save_index(index, vectorizer, index_file, vectorizer_file)
        index, vectorizer = FileSearch.load_index(index_file, vectorizer_file)
        query = '*****'
        result_file_name = FileSearch.search(query, index, vectorizer, files_data,num=5)


   create_file(folder_path)
   #query ='搜索语句'
   #file_search(query)
   
   #file_add(folder_path)
  

我们还可以根据自己的需求,添加新的文件,可以是txt,pdf的文件,pdf有的文件可以直接转文本,有的图片的需要OCR识别,这个可以接入OCR进行识别,使得系统更加的完善。欢迎大家进行关注与支持,有更多需求和合作的可以联系。

你可能感兴趣的:(深度学习实战项目,自然语言处理实战,人工智能,文本相似度,搜索,自然语言处理)