二、模型和代价函数(Model and Cost Function)
2.1 模型表示(Model Representation)
在监督学习的文章中,我们举了一个预测房价的栗子。
现在我们要来构建一个数据模型,在这个模型中,我们告诉它房子的面积,它将预测房子的价格。
首先,我们提前有一个数据集,这个数据集也被称为训练集(Training Set)。
我们在图上表示出这些点,用一条直线去拟合这些点。
当然,它有可能不应该是一条直线,这里我们简化了。
把这条直线用方程表示就是:
为了描述这个回归问题,这个课程中,对于字母的含义做了下面的规范。
这个监督学习算法的工作流程可以表示成下图:
因为只含了一个特征,房子的面积,所以这个问题也被叫做单变量线性回归(Linear Regression with One Variable)问题。
不过,你可能也看出来了,这直线不是随便画的,冥冥之中存在着一条直线能完美拟合这些数据。
下一篇,我们引入代价函数(Cost Function),他能帮我们找到最佳的那一条直线。
写于 2018.12.1