紧接上一篇zygote进程的启动流程,上一篇的结尾提到zygote进程中会fock出一个system_server进程,用于启动和管理Android系统中大部分的系统服务,本篇就来分析system_server进程是如何创建并运行的以及它都做了哪些重要的工作。
//文件路径:frameworks\base\core\java\com\android\internal\os\ZygoteInit.java
public static void main(String argv[]) {
//创建服务端的socket,等待AMS发出的创建应用进程的消息 (ZygoteServer.java)
zygoteServer = new ZygoteServer(isPrimaryZygote);
if (startSystemServer) {
//创建SystemServer进程的入口
Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer);
// child (system_server) process.
if (r != null) {
//执行runnable的run方法
r.run();
return;
}
}
}
继续跟入forkSystemServer()方法:
private static Runnable forkSystemServer(String abiList, String socketName,
ZygoteServer zygoteServer) {
/* Hardcoded command line to start the system server */
//启动systemserver的参数
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,"
+ "1024,1032,1065,3001,3002,3003,3006,3007,3009,3010,3011",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server", //进程名
"--runtime-args",
"--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
"com.android.server.SystemServer", //这里留个印象,fork出进程后,会调到这个文件中。
};
ZygoteArguments parsedArgs = null;
try {
//解析上面写死的参数
parsedArgs = new ZygoteArguments(args);
//fork SystemServer进程
//需要注意的是,返回值pid不是当前进程的id,而是当前进程的子进程的id,若pid=0说明当前进程是systemserver进程,因为它没有子进程所以返回0
//而pid>0,说明当前进程是zygote进程,因为它有子进程,且子进程是systemserver
pid = Zygote.forkSystemServer(
parsedArgs.mUid, parsedArgs.mGid,
parsedArgs.mGids,
parsedArgs.mRuntimeFlags,
null,
parsedArgs.mPermittedCapabilities,
parsedArgs.mEffectiveCapabilities);
//从这里开始,下面的代码会在两个进程中执行,fork操作可理解为将zygote进程复制了一个称作systemserver进程
if (pid == 0) { //pid=0,就是systemserver进程,下文会看到
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
//因为zygote中创建的socket在systemServer进程中用不到,所以关闭socket资源
zygoteServer.closeServerSocket();
return handleSystemServerProcess(parsedArgs); //将上面的参数传入
}
}
继续跟入Zygote.forkSystemServer():
//文件路径:frameworks\base\core\java\com\android\internal\os\Zygote.java
static int forkSystemServer(int uid, int gid, int[] gids, int runtimeFlags,
int[][] rlimits, long permittedCapabilities, long effectiveCapabilities) {
ZygoteHooks.preFork();
//这里转到native层去fork进程
int pid = nativeForkSystemServer(
uid, gid, gids, runtimeFlags, rlimits,
permittedCapabilities, effectiveCapabilities);
// Set the Java Language thread priority to the default value for new apps.
Thread.currentThread().setPriority(Thread.NORM_PRIORITY);
ZygoteHooks.postForkCommon();
return pid;
}
上一篇中,zygote进程中做的比较重要事儿之一就是注册jni方法,趁热打铁来看下java层的native方法是怎么找到对应的native层的方法的。
//文件路径:sframeworks/base/core/jni/AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector& options, bool zygote)
{
/*
* Register android functions.注册jni的入口在这里
*/
if (startReg(env) < 0) { //注册JNI方法,系统api中涉及的native方法都是在这里注册的
ALOGE("Unable to register all android natives\n");
return;
}
}
int AndroidRuntime::startReg(JNIEnv* env)
{
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
}
//这个数组中保存了,注册android系统中各个部分注册jni的函数指针
static const RegJNIRec gRegJNI[] = {
...
//和本次native方法相关的是这个,其实也比较好找,是对应的Zygote.java文件的包名
REG_JNI(register_com_android_internal_os_Zygote),
}
继续跟进register_com_android_internal_os_Zygote():
//文件路径: frameworks/base/core/jni/com_android_internal_os_Zygote.cpp
int register_com_android_internal_os_Zygote(JNIEnv* env) {
gZygoteClass = MakeGlobalRefOrDie(env, FindClassOrDie(env, kZygoteClassName));
gCallPostForkSystemServerHooks = GetStaticMethodIDOrDie(env, gZygoteClass,
"callPostForkSystemServerHooks",
"(I)V");
gCallPostForkChildHooks = GetStaticMethodIDOrDie(env, gZygoteClass, "callPostForkChildHooks",
"(IZZLjava/lang/String;)V");
return RegisterMethodsOrDie(env, "com/android/internal/os/Zygote", gMethods, NELEM(gMethods));
}
//其中gMethods这个数组是线索,它定义了Zygote.java中所有的native方法与c++中方法的对应关系
static const JNINativeMethod gMethods[] = {
//这个就是此次寻找的目标
{"nativeForkSystemServer", "(II[II[[IJJ)I",
(void*)com_android_internal_os_Zygote_nativeForkSystemServer},
...
}
static jint com_android_internal_os_Zygote_nativeForkSystemServer(
JNIEnv* env, jclass, uid_t uid, gid_t gid, jintArray gids,
jint runtime_flags, jobjectArray rlimits, jlong permitted_capabilities,
jlong effective_capabilities) {
//进一步进行fork操作,此方法中就会调用系统的fork函数,到此就不再深入分析了
pid_t pid = ForkCommon(env, true,
fds_to_close,
fds_to_ignore,
true);
// 从这个注释可得知 pid=0的是system_server进程
if (pid == 0) {
// System server prcoess does not need data isolation so no need to
// know pkg_data_info_list.
} else if (pid > 0) { //pid>0的是zygote进程
// The zygote process checks whether the child process has died or not.
ALOGI("System server process %d has been created", pid);
gSystemServerPid = pid;
}
}
回到最开始的地方,forkSystemServer()中fork出了system_server进程后,执行了handleSystemServerProcess(parsedArgs)方法。
//文件路径:frameworks\base\core\java\com\android\internal\os\ZygoteInit.java
private static Runnable handleSystemServerProcess(ZygoteArguments parsedArgs) {
...
ClassLoader cl = null;
if (systemServerClasspath != null) {
//创建pathclassLoader,类加载器
cl = createPathClassLoader(systemServerClasspath, parsedArgs.mTargetSdkVersion);
Thread.currentThread().setContextClassLoader(cl);
}
/*
* Pass the remaining arguments to SystemServer.
*/
return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, cl);
}
继续跟入ZygoteInit.zygoteInit():
//frameworks\base\core\java\com\android\internal\os\ZygoteInit.java
public static final Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
if (RuntimeInit.DEBUG) {
Slog.d(RuntimeInit.TAG, "RuntimeInit: Starting application from zygote");
}
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");
RuntimeInit.redirectLogStreams();
//初始化运行环境
RuntimeInit.commonInit();
//开启binder线程池
ZygoteInit.nativeZygoteInit();
return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv,
classLoader);
}
继续跟入RuntimeInit.applicationInit():
//文件路径: frameworks\base\core\java\com\android\internal\os\RuntimeInit.java
protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
...
return findStaticMain(args.startClass, args.startArgs, classLoader);
}
protected static Runnable findStaticMain(String className, String[] argv,
ClassLoader classLoader) {
Class> cl;
try {
//这里关键点就来了,还记得在fork进程前有个String[]里面定义的启动systemserver的多个参数吗?
//classname就是一层层传递进来的 "com.android.server.SystemServer"
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
// 通过反射拿到SystemServer类的main()
m = cl.getMethod("main", new Class[] { String[].class });
}
//将runnable返回
return new MethodAndArgsCaller(m, argv);
}
还记得上面在pid=0,也就是在systemserver进程中会执行r.run();这个r就是MethodAndArgsCaller,因此打开run():
//文件路径: frameworks\base\core\java\com\android\internal\os\RuntimeInit.java
public void run() {
try {
//很简单,通过反射执行SystemServer的main()
mMethod.invoke(null, new Object[] { mArgs });
}
}
到此,zygote进程fork出了systemserver进程,android系统启动流程也从zygote阶段过渡到了systemserver阶段,下面我们就可以看看在systemserver进程中主要都做了哪些事儿。
//文件路径 frameworks/base/services/java/com/android/server/systemServer.java
/**
* The main entry point from zygote. zygote fork出systemserver进程后,systemserver部分代码的入口
*/
public static void main(String[] args) {
new SystemServer().run();
}
//主要操作在run方法中
private void run() {
//创建looper
Looper.prepareMainLooper();
// Initialize native services. 加载动态库libandroid_servers.so
System.loadLibrary("android_servers");
//step1:创建系统上下文
createSystemContext();
// Create the system service manager. 用于启动和管理下面的服务
mSystemServiceManager = new SystemServiceManager(mSystemContext);
mSystemServiceManager.setStartInfo(mRuntimeRestart,
mRuntimeStartElapsedTime, mRuntimeStartUptime);
LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
// 准备一个线程池,用于并行执行systemserver进程初始化中的多个任务
SystemServerInitThreadPool.start();
// Start services. systemserver进程中最重要的事,启动一下三种类型中的各个服务
try {
t.traceBegin("StartServices");
startBootstrapServices(t); //引导服务 AMS PMS
startCoreServices(t); //核心服务(主要是系统自己用到的服务)
startOtherServices(t); //其他服务 WMS
}
// looper循环,保证此进程不会退出(结束)
Looper.loop();
}
---------------------------step1-----------------------------------
private void createSystemContext() {
//通过ActivityThread创建上下文,ActivityThread相对于进程的关系,就好像CEO相对于公司的关系
// 它掌握着公司(进程)的资源以及调度执行的权利
ActivityThread activityThread = ActivityThread.systemMain();
mSystemContext = activityThread.getSystemContext();
//设置默认主题
mSystemContext.setTheme(DEFAULT_SYSTEM_THEME);
final Context systemUiContext = activityThread.getSystemUiContext();
systemUiContext.setTheme(DEFAULT_SYSTEM_THEME);
}
下面我们来具体看下SystemServiceManager是如何管理这些系统服务的?
在此之前,我们先总结一下几个名称相近的概念:
OK,分清这些概念后,我们以ATMS(ActivityManagerTaskService),这个与应用层开发者最密切的系统服务为例,来看SystemServiceManager是如何管理系统服务的。
private void startBootstrapServices(@NonNull TimingsTraceAndSlog t) {
//mSystemServiceManager已经在上一步进行创建
ActivityTaskManagerService atm = mSystemServiceManager.startService(
ActivityTaskManagerService.Lifecycle.class).getService();
...
}
//------------------------- 我们先看前半句startService()--------------------------------
// frameworks\base\services\core\java\com\android\server\SystemServiceManager.java
public T startService(Class serviceClass) {
try {
//得到对应的类名,此处为ActivityTaskManagerService.Lifecycle
final String name = serviceClass.getName();
final T service;
try {
//通过反射创建ActivityTaskManagerService.Lifecycle对象
Constructor constructor = serviceClass.getConstructor(Context.class);
service = constructor.newInstance(mContext);
}
//继续调用重载方法
startService(service);
//将ActivityTaskManagerService.Lifecycle实例返回
return service;
} finally {
Trace.traceEnd(Trace.TRACE_TAG_SYSTEM_SERVER);
}
}
private final ArrayList mServices = new ArrayList();
public void startService(@NonNull final SystemService service) {
// 将service(这里是ActivityTaskManagerService.Lifecycle对象)存入list集合
mServices.add(service);
// Start it.
long time = SystemClock.elapsedRealtime();
try {
//调用ActivityTaskManagerService.Lifecycle的onStart()
service.onStart();
}
warnIfTooLong(SystemClock.elapsedRealtime() - time, service, "onStart");
}
//文件路径: frameworks\base\services\core\java\com\android\server\wm\ActivityTaskManagerService.java
public static final class Lifecycle extends SystemService {
private final ActivityTaskManagerService mService;
public Lifecycle(Context context) {
super(context);
//创建ActivityTaskManagerService实例
mService = new ActivityTaskManagerService(context);
}
@Override
public void onStart() {
//将ActivityTaskManagerService注册到serviceManager进程,(serviceManager进程是在init进程中解析init.rc文件后启动的,不熟悉的小伙伴可以去翻下我的另一篇:serviceManager进程的启动流程) //这个流程在下面单独展开,以免妨碍我们跟踪主线流程
publishBinderService(Context.ACTIVITY_TASK_SERVICE, mService);
//调用ActivityTaskManagerService的start()
mService.start();
}
}
private void start() {
//mInternal 是在ActivityTaskManagerService的构造方法中创建的,它是LocalService类型
//LocalServices中维护了一个ArrayMap,用于存储LocalService,LocalService封装了一些ATMS能提供的服务的具体实现逻辑,后面可能专门写一篇来分析ATMS。
LocalServices.addService(ActivityTaskManagerInternal.class, mInternal);
}
//到这里我们知道前半句反回了ActivityTaskManagerService.Lifecycle实例
//-------------------------后半句getService()--------------------------------------------
//后半句非常简单,就是将上面创建的ActivityTaskManagerService实例返回了出去
public static final class Lifecycle extends SystemService {
private final ActivityTaskManagerService mService;
public ActivityTaskManagerService getService() {
return mService;
}
}
上面还留了一个问题,即服务创建后怎么注册到serviceManager进程?
//调用入口ActivityTaskManagerService.Lifecycle.onStart()
publishBinderService(Context.ACTIVITY_TASK_SERVICE, mService);
//文件路径:frameworks\base\services\core\java\com\android\server\SystemService.java
//重载方法调用,最终走到这个方法
// name: "activity_task"
// service: ActivityTaskManagerService对象
// allowIsolated:false
// dumpPriority: DUMP_FLAG_PRIORITY_DEFAULT
protected final void publishBinderService(String name, IBinder service,
boolean allowIsolated, int dumpPriority) {
ServiceManager.addService(name, service, allowIsolated, dumpPriority);
}
//文件路径:frameworks\base\core\java\android\os\ServiceManager.java
public static void addService(String name, IBinder service, boolean allowIsolated,
int dumpPriority) {
try {
getIServiceManager().addService(name, service, allowIsolated, dumpPriority);
} catch (RemoteException e) {
Log.e(TAG, "error in addService", e);
}
}
private static IServiceManager getIServiceManager() {
if (sServiceManager != null) {
return sServiceManager;
}
// Find the service manager
sServiceManager = ServiceManagerNative
.asInterface(Binder.allowBlocking(BinderInternal.getContextObject()));
return sServiceManager;
}
getIServiceManager()这个流程在Android IPC Binder机制学习(一)中分析过,这是个跨进程通信,最终会调到以下位置:
//文件位置:frameworks\native\cmds\servicemanage\ServiceManager.cpp
Status ServiceManager::addService(const std::string& name, const sp& binder, bool allowIsolated, int32_t dumpPriority) {
...
// Overwrite the old service if it exists
// ServiceMap mNameToService; 定义在ServiceManager.h中,这样serviceManager进程就保存了ATMS的binder对象。
mNameToService[name] = Service {
.binder = binder,
.allowIsolated = allowIsolated,
.dumpPriority = dumpPriority,
.debugPid = ctx.debugPid,
};
...
}
还有一个点简单提一下,上面提到所有的系统服务都扩展自SystemService类,具体实现分为两类:
到这里对SystemServer进程的分析就结束了。
总结:systemserver进程主要做了哪些事儿