十、切分织物起球和非起球区域以便于计算毛球对比度

一、通过训练的模型可以将织物的起球区域进行识别区分

原图:十、切分织物起球和非起球区域以便于计算毛球对比度_第1张图片
模型识别:十、切分织物起球和非起球区域以便于计算毛球对比度_第2张图片

二、对比度的计算

为了对织物起球等级进行评定,需要这边不同的参数特征来构建模型的评级系统
通过查阅相关文献,确定最终的特征参数为:织物起球个数、织物起球最大面积、织物起球平均面积、对比度、光学体积、密度分布
织物起球个数、织物起球最大面积、织物起球平均面积这些通过轮廓即可实现统计,详情可参考博文:十七、轮廓发现

文献中给出的定义如下:
十、切分织物起球和非起球区域以便于计算毛球对比度_第3张图片

①毛球区域平均灰度值

织物原图为:E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg
模型预测的图片为:E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg
十、切分织物起球和非起球区域以便于计算毛球对比度_第4张图片
此时只需要对模型预测的图片2_predict.jpg转灰度图
统计灰度图中灰度值总和、非0像素值的像素点个数,然后相除即可得到毛球区域平均灰度值

img = cv2.imread(r"E:\Jupyter_notebook\pytorch\opencv\2_predict.jpg"),读取图片
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),转灰度图
x = cv2.countNonZero(grayImage),非0值的像素点个数
pill_gray = np.sum(grayImage),像素点之和,因为黑色像素点值为0,没有影响
aver_pill_gray = pill_gray/x,得到毛球区域平均灰度值
最终得到毛球区域平均灰度值aver_pill_gray

import cv2
import numpy as np
from matplotlib import pyplot as plt

def show_photo(name,picture):#图像显示函数
    cv2.imshow(name,picture)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
img = cv2.imread(r"E:\Jupyter_notebook\pytorch\opencv\2_predict.jpg")
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

show_photo("origin",img)
show_photo("gray",grayImage)


x = cv2.countNonZero(grayImage) #非0值的像素点个数
pill_gray = np.sum(grayImage) #像素点之和 

aver_pill_gray = pill_gray/x

print(pill_gray)
print(x)
print(aver_pill_gray)
"""
160314
8964
17.884203480589022
"""

起球区域:十、切分织物起球和非起球区域以便于计算毛球对比度_第5张图片
起球区域灰度图:十、切分织物起球和非起球区域以便于计算毛球对比度_第6张图片

②非毛球区域平均灰度值

原图和模型预测的图片做差即可得到非毛球区域,然后转换为灰度图,求非0像素点总个数、求总像素点之和,就可以计算出非毛球区域平均灰度值

img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg"),读取原图
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg"),读取模型预测之后的只含有起球区域的图像
img = cv2.subtract(img_origin, img_predict),原图和起球区域做差,得到非起球区域图像
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY),非起球区域图像灰度图
x = cv2.countNonZero(grayImage),计算非起球区域图像灰度图中非0值的像素点个数
nonpill_gray = np.sum(grayImage),计算非起球区域图像灰度图像素点之和,因为黑色像素点值为0,没有影响
aver_nonpill_gray = nonpill_gray/x,计算非起球区域图像灰度图的平均值灰度值
最终得到非毛球区域平均灰度值aver_nonpill_gray

import cv2
import numpy as np
from matplotlib import pyplot as plt

def show_photo(name,picture):#图像显示函数
    cv2.imshow(name,picture)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg")
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg")

img = cv2.subtract(img_origin, img_predict)
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
x = cv2.countNonZero(grayImage) #非0值的像素点个数
nonpill_gray = np.sum(grayImage)#像素点之和 
aver_nonpill_gray = nonpill_gray/x


show_photo("origin",img_origin)
show_photo("pilling",img_predict)
show_photo("nonpilling",img)
show_photo("gray",grayImage)

print(nonpill_gray)
print(x)
print(aver_nonpill_gray)
"""
6103678
50237
121.49766108645022
"""

原图:十、切分织物起球和非起球区域以便于计算毛球对比度_第7张图片
起球区域:十、切分织物起球和非起球区域以便于计算毛球对比度_第8张图片
非起球区域:十、切分织物起球和非起球区域以便于计算毛球对比度_第9张图片
非起球区域灰度图:十、切分织物起球和非起球区域以便于计算毛球对比度_第10张图片

③对比度

根据论文中给出的公式,对比度就是aver_pill_grayaver_nonpill_gray做差
C = abs(aver_pill_gray - aver_nonpill_gray)

三、完整代码

import cv2
import numpy as np
from matplotlib import pyplot as plt

def show_photo(name,picture):#图像显示函数
    cv2.imshow(name,picture)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg")
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg")
img_nonpill = cv2.subtract(img_origin, img_predict)

grayImage_pill = cv2.cvtColor(img_predict,cv2.COLOR_BGR2GRAY)
grayImage_nonpill = cv2.cvtColor(img_nonpill,cv2.COLOR_BGR2GRAY)

pill_number = cv2.countNonZero(grayImage_pill) #非0值的像素点个数
nonpill_number = cv2.countNonZero(grayImage_nonpill) #非0值的像素点个数

pill_gray = np.sum(grayImage_pill) #像素点之和 
nonpill_gray = np.sum(grayImage_nonpill) #像素点之和 

aver_pill_gray = pill_gray/pill_number
aver_nonpill_gray = nonpill_gray/nonpill_number

C = abs(aver_pill_gray - aver_nonpill_gray)

print(aver_pill_gray)
print(aver_nonpill_gray)
print(C)
"""
17.884203480589022
121.49766108645022
103.6134576058612
"""

你可能感兴趣的:(DA,计算机视觉,opencv,python)