为了对织物起球等级进行评定,需要这边不同的参数特征来构建模型的评级系统
通过查阅相关文献,确定最终的特征参数为:织物起球个数、织物起球最大面积、织物起球平均面积、对比度、光学体积、密度分布
织物起球个数、织物起球最大面积、织物起球平均面积这些通过轮廓即可实现统计,详情可参考博文:十七、轮廓发现
织物原图为:E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg
模型预测的图片为:E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg
此时只需要对模型预测的图片2_predict.jpg
转灰度图
统计灰度图中灰度值总和、非0像素值的像素点个数,然后相除即可得到毛球区域平均灰度值
img = cv2.imread(r"E:\Jupyter_notebook\pytorch\opencv\2_predict.jpg")
,读取图片
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
,转灰度图
x = cv2.countNonZero(grayImage)
,非0值的像素点个数
pill_gray = np.sum(grayImage)
,像素点之和,因为黑色像素点值为0,没有影响
aver_pill_gray = pill_gray/x
,得到毛球区域平均灰度值
最终得到毛球区域平均灰度值aver_pill_gray
import cv2
import numpy as np
from matplotlib import pyplot as plt
def show_photo(name,picture):#图像显示函数
cv2.imshow(name,picture)
cv2.waitKey(0)
cv2.destroyAllWindows()
img = cv2.imread(r"E:\Jupyter_notebook\pytorch\opencv\2_predict.jpg")
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
show_photo("origin",img)
show_photo("gray",grayImage)
x = cv2.countNonZero(grayImage) #非0值的像素点个数
pill_gray = np.sum(grayImage) #像素点之和
aver_pill_gray = pill_gray/x
print(pill_gray)
print(x)
print(aver_pill_gray)
"""
160314
8964
17.884203480589022
"""
原图和模型预测的图片做差即可得到非毛球区域,然后转换为灰度图,求非0像素点总个数、求总像素点之和,就可以计算出非毛球区域平均灰度值
img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg")
,读取原图
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg")
,读取模型预测之后的只含有起球区域的图像
img = cv2.subtract(img_origin, img_predict)
,原图和起球区域做差,得到非起球区域图像
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
,非起球区域图像灰度图
x = cv2.countNonZero(grayImage)
,计算非起球区域图像灰度图中非0值的像素点个数
nonpill_gray = np.sum(grayImage)
,计算非起球区域图像灰度图像素点之和,因为黑色像素点值为0,没有影响
aver_nonpill_gray = nonpill_gray/x
,计算非起球区域图像灰度图的平均值灰度值
最终得到非毛球区域平均灰度值aver_nonpill_gray
import cv2
import numpy as np
from matplotlib import pyplot as plt
def show_photo(name,picture):#图像显示函数
cv2.imshow(name,picture)
cv2.waitKey(0)
cv2.destroyAllWindows()
img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg")
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg")
img = cv2.subtract(img_origin, img_predict)
grayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
x = cv2.countNonZero(grayImage) #非0值的像素点个数
nonpill_gray = np.sum(grayImage)#像素点之和
aver_nonpill_gray = nonpill_gray/x
show_photo("origin",img_origin)
show_photo("pilling",img_predict)
show_photo("nonpilling",img)
show_photo("gray",grayImage)
print(nonpill_gray)
print(x)
print(aver_nonpill_gray)
"""
6103678
50237
121.49766108645022
"""
根据论文中给出的公式,对比度就是aver_pill_gray
和aver_nonpill_gray
做差
C = abs(aver_pill_gray - aver_nonpill_gray)
import cv2
import numpy as np
from matplotlib import pyplot as plt
def show_photo(name,picture):#图像显示函数
cv2.imshow(name,picture)
cv2.waitKey(0)
cv2.destroyAllWindows()
img_origin = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_origin.jpg")
img_predict = cv2.imread(r"E:/Jupyter_notebook/pytorch/opencv/2_predict.jpg")
img_nonpill = cv2.subtract(img_origin, img_predict)
grayImage_pill = cv2.cvtColor(img_predict,cv2.COLOR_BGR2GRAY)
grayImage_nonpill = cv2.cvtColor(img_nonpill,cv2.COLOR_BGR2GRAY)
pill_number = cv2.countNonZero(grayImage_pill) #非0值的像素点个数
nonpill_number = cv2.countNonZero(grayImage_nonpill) #非0值的像素点个数
pill_gray = np.sum(grayImage_pill) #像素点之和
nonpill_gray = np.sum(grayImage_nonpill) #像素点之和
aver_pill_gray = pill_gray/pill_number
aver_nonpill_gray = nonpill_gray/nonpill_number
C = abs(aver_pill_gray - aver_nonpill_gray)
print(aver_pill_gray)
print(aver_nonpill_gray)
print(C)
"""
17.884203480589022
121.49766108645022
103.6134576058612
"""