特征点、Hough变换和卷积神经网络

一、实验目的
(1)掌握图像特征点提取
(2)掌握图像的边缘提取
(3)掌握Hough形状检测
(4)掌握LeNet的架构

二、实验内容与记录


(1)使用OpenCV对图像进行Harris,SIFT特征点提取,并标注特征点。

特征点、Hough变换和卷积神经网络_第1张图片
特征点、Hough变换和卷积神经网络_第2张图片
特征点、Hough变换和卷积神经网络_第3张图片

(2)使用OpenCV对图像Canny边缘检测,显示并保存。
特征点、Hough变换和卷积神经网络_第4张图片
特征点、Hough变换和卷积神经网络_第5张图片

(3)使用OpenCV对house.tif进行霍夫直线检测,对硬币图片进行霍夫圆形检测。
特征点、Hough变换和卷积神经网络_第6张图片
特征点、Hough变换和卷积神经网络_第7张图片

(4)使用OpenCV对两幅有重叠的图片匹配后进行拼接,生成全景图。

import cv2
import numpy as np

# 读取两张重叠的图片
img1 = cv2.imread("1.jpg")
img2 = cv2.imread("2.jpg")

# 创建SIFT特征提取器
sift = cv2.xfeatures2d.SIFT_create()

# 提取图片特征点及描述符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

# 创建FLANN匹配器
flann = cv2.FlannBasedMatcher()

# 匹配特征点
matches = flann.knnMatch(des1, des2, k=2)

# 选择优秀的匹配点
good_matches = []
for m, n in matches:
   if m.distance < 0.7 * n.distance:
       good_matches.append(m)

# 获取匹配点坐标
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

# 计算单应性矩阵
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

# 计算图像变换后的尺寸
h, w = img1.shape[:2]
img2_aligned = cv2.warpPerspective(img2, H, (w, h))

# 进行拼接
result = np.zeros((h, w*2, 3), dtype=np.uint8)
result[:, :w, :] = img1
result[:, w:, :] = img2_aligned

# 输出全景图
cv2.imwrite("panorama.jpg", result)

(5)复现LeNet 5 ,实现对MNIST手写数字的识别


from multiprocessing import freeze_support

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms


# Define LeNet-5 model
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.pool2 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool1(torch.relu(self.conv1(x)))
        x = self.pool2(torch.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x
if __name__ == '__main__':
    freeze_support()


    # Load MNIST dataset
    transform = transforms.Compose(
        [transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,))])  # Normalize pixel values to [-1, 1]

    trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                      download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

    testset = torchvision.datasets.MNIST(root='./data', train=False,
                                     download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=64,
                                         shuffle=False, num_workers=2)

# Initialize LeNet-5 model, loss function, and optimizer
    net = LeNet5()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# Train the model
    for epoch in range(10):  # Change the number of epochs as needed
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
        print('Epoch [%d], Loss: %.4f' % (epoch + 1, running_loss / len(trainloader)))

    print('Finished training')

# Test the model
    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: %.2f %%' % (
            100 * correct / total))

你可能感兴趣的:(cnn,opencv,计算机视觉)