数据结构——时间复杂度(详解,详解,详解)

1.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度
 

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
        for (int j = 0; j < N ; ++ j)
        {
            ++count;
        }
    }
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

Func1 执行的基本操作次数 :
Func1=N^2 + 2*N + 10

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法


 1.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

1.3常见时间复杂度计算举例

例一:

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}

时间复杂度:O(N)

我们在计算时只要计算出大概就可以所以我们可以省略2和后面常数10

例二:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++ k)
    {
        ++count;
    }
    for (int k = 0; k < N ; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

时间复杂度:O(M+N)

这个函数里面M和N都是未知数,无法比较出谁大谁小

例三:

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++ k)
    {
        ++count;
    }
    printf("%d\n", count);
}

 时间复杂度:O(1)

这里我们要注意一下,不论什么常数在这里我们都写成O(1)
 

例四:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
 

例五:冒泡语句

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
    if (exchange == 0)
    break;
    }
}

时间复杂度:O(N^2)

这里我们可以看出函数是一个冒泡语句,是一个等差数列,我们在计算等差数列的时候基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)
 

例六:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
    while (begin <= end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid-1;
        else
            return mid;
    }
    return -1;
}

时间复杂度:O(lgN)

基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN
 

例七:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    return Fac(N-1)*N;
}

时间复杂度:O(N)

这个我们可以知道为递归,在递归中,我们每一次递归都可以执行一次,所以我们可以认为多个1加在一起最后经过N次

例八:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
        return 1;

    for(int i=0; i

时间复杂度:O(N^2)

这题我们可以发现又有递归,而在递归里面还有循环,所以我们可知N随着循环,利用次数会依次减少所以我们本质是一个等差数列,而等差数列在遵循准则的情况下可以化简为N^2


以上就是本次时间复杂度的分享,喜欢的话请三连支持一下哦,感谢您的观看


你可能感兴趣的:(数据结构,数据结构,算法)