图结构基本知识

  • 1. 相关概念
  • 2. 图的表示方式
  • 3. 图的遍历
    • 3.1 深度优先遍历(DFS)
    • 3.2 广度优先遍历(BFS)

1. 相关概念

  • 图G(V,E) :一种数据结构,可表示“多对多”关系,由顶点集V和边集E组成;
  • 顶点(vertex) :
  • 边 (edge):一幅点对(v,w),v,w∈V,边也称为弧;
  • 邻接:点v,w邻接,当且仅当边(v,w)∈E;
  • 路径 :由一个顶点序列v1,v2,…,vn组成,路径长为n-1;
  • 有向图 :边是单向的,点对有序;
  • 无向图 :边是双向的图,点对无序;
  • 带权图:不同边具有不同的权值的图;
  • 连通:无向图的一个顶点到其他任何顶点都存在一条路径,则称其为连通的;
  • 强连通:有向图的一个顶点到其他任何顶点都存在一条路径;
  • 弱连通:有向图本身不是强连通的,但是其边不考虑方向的无向图是连通的;
  • 完全图:每一对顶点间都存在边;

2. 图的表示方式

  • 邻接矩阵:使用二维数组实现,数组中每个元素表示图中两顶点之间是否有边,或者表示边的权值,适用于稠密图,对于稀疏图而言此表示方法过于浪费空间;

图结构基本知识_第1张图片

package com.northsmile.graph;

import java.util.ArrayList;
import java.util.Arrays;

/**
 * Author:NorthSmile
 * Create:2023/4/18 9:17
 * 使用邻接矩阵表示图(无向图)
 */
public class Graph {
    // 存储边及其权值
    int[][] edges;
    // 存储顶点
    ArrayList<String> vertexes;
    // 记录边的数目
    int edgeNums;

    public Graph(int n){
        edges=new int[n][n];
        vertexes=new ArrayList<>(n);
        edgeNums=0;
    }

    /**
     * 插入顶点
     * @param vertex
     */
    public void insertVertex(String vertex){
        vertexes.add(vertex);
    }

    /**
     * 插入边
     * @param v1 边的一个顶点对应下标
     * @param v2 边的另一个顶点对应下标
     * @param w 边对应权值,默认为1
     */
    public void insertEdge(int v1,int v2,int w){
        edges[v1][v2]=w;
        edges[v2][v1]=w;
        edgeNums++;
    }

    /**
     * 获取顶点数量
     * @return
     */
    public int getVertexesNum(){
        return vertexes.size();
    }

    /**
     * 获取边的数目
     * @return
     */
    public int getEdgesNum(){
        return edgeNums;
    }

    /**
     * 获取指定下标对应的顶点的值
     * @param v
     * @return
     */
    public String getValByIndex(int v){
        return vertexes.get(v);
    }

    /**
     * 获取指定边的权值
     * @param v1
     * @param v2
     * @return
     */
    public int getWeightOfEdge(int v1,int v2){
        return edges[v1][v2];
    }

    /**
     * 显示表示图的邻接矩阵
     */
    public void showGraph(){
        for (int[] edge:edges){
            System.out.println(Arrays.toString(edge));
        }
    }
}

package com.northsmile.graph;

/**
 * Author:NorthSmile
 * Create:2023/4/18 9:18
 */
public class GraphDemo {
    public static void main(String[] args) {
        int n=5;
        String[] vertexes={"A","B","C","D","E"};
        Graph graph = new Graph(n);

        // 插入顶点
        for (String vertex:vertexes){
            graph.insertVertex(vertex);
        }
        // 插入边
        graph.insertEdge(0,1,1);
        graph.insertEdge(0,2,1);
        graph.insertEdge(1,2,1);
        graph.insertEdge(1,3,1);
        graph.insertEdge(1,4,1);
        graph.showGraph();
    }
}
  • 邻接表:使用数组+链表的方式实现,适用于稀疏图表示,是图的标准表示方法,对于每个顶点,将其所有邻接点使用一个表存放;
    图结构基本知识_第2张图片
package com.northsmile.graph;

import java.util.ArrayList;
import java.util.HashMap;

/**
 * Author:NorthSmile
 * Create:2023/4/18 11:12
 * 使用邻接表表示图(有向图)
 */
public class GraphByAdjacenceList {
    // 邻接表
    HashMap<String,Vertex> list;
    int vertexNums;
    int edgeNums;

    public GraphByAdjacenceList(int n){
        list=new HashMap<>();
        vertexNums=n;
        edgeNums=0;
    }

    /**
     * 插入顶点
     * @param vertex
     */
    public void insertVertex(String vertex){
        list.put(vertex,new Vertex(vertexNums));
    }

    /**
     * 插入边
     * @param v 顶点
     * @param w 邻接点
     */
    public void insertEdge(String v,String w){
        Vertex vertex = list.get(v);
        vertex.table.add(w);
        edgeNums++;
    }

    /**
     * 获取顶点数量
     * @return
     */
    public int getVertexesNum(){
        return list.size();
    }

    /**
     * 获取边的数目
     * @return
     */
    public int getEdgesNum(){
        return edgeNums;
    }

    /**
     * 显示表示图的邻接表
     */
    public void showGraph(){
        for (String vertex:list.keySet()){
            System.out.println(vertex+":"+list.get(vertex).table);
        }
    }

    /**
     * 顶点类
     */
    class Vertex{
        ArrayList<String> table;

        public Vertex(int n){
            table=new ArrayList<>(n/2);
        }
    }
}

package com.northsmile.graph;

/**
 * Author:NorthSmile
 * Create:2023/4/18 9:18
 */
public class GraphDemo {
    public static void main(String[] args) {
        // 2.邻接表
        int n=5;
        String[] vertexes={"A","B","C","D","E"};
        GraphByAdjacenceList graph = new GraphByAdjacenceList(n);

        // 插入顶点
        for (String vertex:vertexes){
            graph.insertVertex(vertex);
        }
        // 插入边
        graph.insertEdge("A","B");
        graph.insertEdge("A","C");
        graph.insertEdge("B","C");
        graph.insertEdge("B","D");
        graph.insertEdge("B","E");
        graph.showGraph();
    }
}

3. 图的遍历

在这里插入图片描述

3.1 深度优先遍历(DFS)

  • 类似树的先序遍历,先访问当前顶点,再依次以其邻接点为新的起点,进行深度优先遍历;
  • 与树的遍历不同,图在深度优先遍历时,当前顶点的邻接点可能已经访问过,所以无需再进行访问;
  • 为了实现顶点的唯一遍历,在代码实现时需要提供一个标记数组,表示对应顶点是否已经访问过;
  • 代码实现以递归方式进行;
    图结构基本知识_第3张图片
    图结构基本知识_第4张图片
    /**
     * 深度优先遍历:类似树的先序遍历
     * @param v 以当前点开始遍历
     * @param visited 标记节点是否访问过
     */
    public void dfs(int v,boolean[] visited){
        System.out.print(vertexes.get(v)+"->");
        // 遍历当前顶点的邻接点
        for (int i=0;i<vertexes.size();i++){
            // 说明v、i之间存在边
            if (edges[v][i]!=0&&!visited[i]){
                visited[i]=true;
                dfs(i,visited);
            }
        }
    }

    public void dfs(){
        // 标记顶点是否已经访问过
        boolean[] visited=new boolean[vertexes.size()];
        // 以每个顶点开始进行DFS,实现图的完整遍历
        for (int i=0;i<vertexes.size();i++){
            if (!visited[i]){
                visited[i]=true;
                dfs(i,visited);
            }
        }
    }

3.2 广度优先遍历(BFS)

  • 类似树的层序遍历,先访问当前顶点,再依次访问其邻接点,然后分别以其邻接点为新的起点,继续进行广度优先遍历;
  • 与树的遍历不同,图在深度优先遍历时,当前顶点的邻接点可能已经访问过,所以无需再进行访问;
  • 为了实现顶点的唯一遍历,在代码实现时需要提供一个标记数组,表示对应顶点是否已经访问过;
  • 代码实现借助队列实现;
    图结构基本知识_第5张图片
    /**
     * 广度优先遍历:类似树的层次遍历
     * @param v 以当前点开始遍历
     * @param visited 标记节点是否访问过
     */
    public void bfs(int v,boolean[] visited){
        ArrayDeque<Integer> queue=new ArrayDeque<>();
        queue.offer(v);
        visited[v]=true;

        while (!queue.isEmpty()){
            Integer cur = queue.poll();
            System.out.print(vertexes.get(cur)+"->");
            // 遍历当前顶点的邻接点
            for (int i=0;i<vertexes.size();i++){
                // 说明v、i之间存在边
                if (edges[cur][i]!=0&&!visited[i]){
                    visited[i]=true;
                    queue.offer(i);
                }
            }
        }
    }

    public void bfs(){
        // 标记顶点是否已经访问过
        boolean[] visited=new boolean[vertexes.size()];
        // 以每个顶点开始进行BFS,实现图的完整遍历
        for (int i=0;i<vertexes.size();i++){
            if (!visited[i]){
                bfs(i,visited);
            }
        }
    }

资料来源:尚硅谷

你可能感兴趣的:(Java开发,数据结构与算法,数据结构,算法,java,图论)