HDU 1198 Farm Irrigation

Farm Irrigation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2492    Accepted Submission(s): 1107


Problem Description
Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot of samll squares. Water pipes are placed in these squares. Different square has a different type of pipe. There are 11 types of pipes, which is marked from A to K, as Figure 1 shows.

HDU 1198 Farm Irrigation

Figure 1


Benny has a map of his farm, which is an array of marks denoting the distribution of water pipes over the whole farm. For example, if he has a map

ADC
FJK
IHE

then the water pipes are distributed like

HDU 1198 Farm Irrigation

Figure 2


Several wellsprings are found in the center of some squares, so water can flow along the pipes from one square to another. If water flow crosses one square, the whole farm land in this square is irrigated and will have a good harvest in autumn.

Now Benny wants to know at least how many wellsprings should be found to have the whole farm land irrigated. Can you help him?

Note: In the above example, at least 3 wellsprings are needed, as those red points in Figure 2 show.
 

 

Input
There are several test cases! In each test case, the first line contains 2 integers M and N, then M lines follow. In each of these lines, there are N characters, in the range of 'A' to 'K', denoting the type of water pipe over the corresponding square. A negative M or N denotes the end of input, else you can assume 1 <= M, N <= 50.
 

 

Output
For each test case, output in one line the least number of wellsprings needed.
 

 

Sample Input
2 2 DK HF 3 3 ADC FJK IHE -1 -1
 

 

Sample Output
2 3
 

 

Author
ZHENG, Lu
 

 

Source
 

 

Recommend
Ignatius.L

//做的最郁闷的一次并查集了,看到这个set()函数就知道哪郁闷了

//

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
bool h1[100][100];
bool h2[100][100];
void set()
{
  h1['B']['A']=h1['B']['C']=h1['B']['F']=h1['B']['G']=h1['B']['H']=h1['B']['I']=h1['B']['K']=1;
  h1['D']['A']=h1['D']['C']=h1['D']['F']=h1['D']['G']=h1['D']['H']=h1['D']['I']=h1['D']['K']=1;
  h1['F']['A']=h1['F']['C']=h1['F']['F']=h1['F']['G']=h1['F']['H']=h1['F']['I']=h1['F']['K']=1;
  h1['G']['A']=h1['G']['C']=h1['G']['F']=h1['G']['G']=h1['G']['H']=h1['G']['I']=h1['G']['K']=1;
  h1['I']['A']=h1['I']['C']=h1['I']['F']=h1['I']['G']=h1['I']['H']=h1['I']['I']=h1['I']['K']=1;
  h1['J']['A']=h1['J']['C']=h1['J']['F']=h1['J']['G']=h1['J']['H']=h1['J']['I']=h1['J']['K']=1;
  h1['K']['A']=h1['K']['C']=h1['K']['F']=h1['K']['G']=h1['K']['H']=h1['K']['I']=h1['K']['K']=1;

  h2['C']['A']=h2['C']['B']=h2['C']['E']=h2['C']['G']=h2['C']['H']=h2['C']['J']=h2['C']['K']=1;
  h2['D']['A']=h2['D']['B']=h2['D']['E']=h2['D']['G']=h2['D']['H']=h2['D']['J']=h2['D']['K']=1;
  h2['E']['A']=h2['E']['B']=h2['E']['E']=h2['E']['G']=h2['E']['H']=h2['E']['J']=h2['E']['K']=1;
  h2['H']['A']=h2['H']['B']=h2['H']['E']=h2['H']['G']=h2['H']['H']=h2['H']['J']=h2['H']['K']=1;
  h2['I']['A']=h2['I']['B']=h2['I']['E']=h2['I']['G']=h2['I']['H']=h2['I']['J']=h2['I']['K']=1;
  h2['J']['A']=h2['J']['B']=h2['J']['E']=h2['J']['G']=h2['J']['H']=h2['J']['J']=h2['J']['K']=1;
  h2['K']['A']=h2['K']['B']=h2['K']['E']=h2['K']['G']=h2['K']['H']=h2['K']['J']=h2['K']['K']=1;
}
int n,m,t;
int f[2503],r[2503];
int find_f(int x)
{
    if(x!=f[x])
    {
        return f[x]=find_f(f[x]);
    }
    return x;
}
void union_set(int x,int y)
{
    x=find_f(x);
    y=find_f(y);
    if(x==y) return;
    t--;
    if(r[x]>r[y])
        {
            f[y]=x;
        }
    else if(r[x]<r[y])
         {
             f[x]=y;
         }
         else
         {
            f[y]=x;
            r[x]++;
         }
}
char s[66][66];
int main()
{
    int i,j,a,b;
    set();
    while(scanf("%d%d",&n,&m),n>0&&m>0)
    {
        memset(s,0,sizeof(s));//开始忘记这个、WA了
        for(i=1;i<=n;i++)
          scanf("%s",s[i]+1);
        t=n*m;
        for(i=1;i<=t;i++)
          f[i]=i,r[i]=0;

        for(i=1;i<=n;i++)
         for(j=1;j<=m;j++)
          {
              if(h1[s[i][j]][s[i][j+1]])
               {
                   a=(i-1)*m+j;
                   b=a+1;
                   union_set(a,b);
               }
               if(h2[s[i][j]][s[i+1][j]])
               {
                   a=(i-1)*m+j;
                   b=i*m+j;    //这个也写错了次,Wa原因之一呀
                   union_set(a,b);
               }
          }
        printf("%d\n",t);
    }
    return 0;
}

你可能感兴趣的:(HDU)