Exercise:Sparse Autoencoder

斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了   http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,没有参考肯定编不出来。。。Σ( ° △ °|||)︴  也当自己理解了一下

这里的自稀疏编码器,练习上规定是64个输入节点,25个隐藏层节点(我实验中只有20个),输出层也是64个节点,一共有10000个训练样本

 

Autoencoder636.png

 

具体步骤:

首先在页面上下载sparseae_exercise.zip 

Step 1:构建训练集

要求在10张图片(图片数据存储在IMAGES中)中随机的选取一张图片,在再这张图片中随机的选取10000个像素点,最终构建一个64*10000的像素矩阵。从一张图片中选取10000个像素点的好处是,只有copy一次IMAGES,速度更快,但是要注意每张图片的像素是512*512的,所以随机选取像素点最好是分行和列各选取100,最终组合成100*100,这样不容易导致越界。验证step 1可以运行train.m中的第一步,结果图如下:

Exercise:Sparse Autoencoder

(只展示了200个sample,所以有4个缺口)

需要自行编写sampleIMAGES中的部分code

function patches = sampleIMAGES()

% sampleIMAGES

% Returns 10000 patches for training



load IMAGES;    % load images from disk 



patchsize = 8;  % we'll use 8x8 patches 

numpatches = 10000;



% Initialize patches with zeros.  Your code will fill in this matrix--one

% column per patch, 10000 columns. 

patches = zeros(patchsize*patchsize, numpatches);



%% ---------- YOUR CODE HERE --------------------------------------

%  Instructions: Fill in the variable called "patches" using data 

%  from IMAGES.  

%  

%  IMAGES is a 3D array containing 10 images

%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,

%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize

%  it. (The contrast on these images look a bit off because they have

%  been preprocessed using using "whitening."  See the lecture notes for

%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image

%  patch corresponding to the pixels in the block (21,21) to (30,30) of

%  Image 1





imageNum = randi([1,10]);     %随机的选择一张图片

[rowNum colNum] = size(IMAGES(:,:,imageNum));

xPos = randperm(rowNum-patchsize+1,100);

yPos = randperm(colNum-patchsize+1,100);

for ii = 1:100                %在图片中选取100*100个像素点

    for jj = 1:100

        patchNum = (ii-1)*100 + jj;

        patches(:,patchNum) = reshape(IMAGES(xPos(ii):xPos(ii)+7,yPos(jj):yPos(jj)+7,...

                                      imageNum),64,1);

    end

end







%% ---------------------------------------------------------------

% For the autoencoder to work well we need to normalize the data

% Specifically, since the output of the network is bounded between [0,1]

% (due to the sigmoid activation function), we have to make sure 

% the range of pixel values is also bounded between [0,1]

patches = normalizeData(patches);



end





%% ---------------------------------------------------------------

function patches = normalizeData(patches)



% Squash data to [0.1, 0.9] since we use sigmoid as the activation

% function in the output layer



% Remove DC (mean of images). 

patches = bsxfun(@minus, patches, mean(patches));



% Truncate to +/-3 standard deviations and scale to -1 to 1

pstd = 3 * std(patches(:));

patches = max(min(patches, pstd), -pstd) / pstd;



% Rescale from [-1,1] to [0.1,0.9]

patches = (patches + 1) * 0.4 + 0.1;



end

 

Step 2:求解自稀疏编码器的参数

这一步就是要运用BP算法求解NN中各层的W,b(W1,W2,b1,b2)参数。 Backpropagation Algorithm算法在教程的第二节中有介绍,但要注意的是自稀疏编码器的误差函数除了有参数的正则化项,还有稀疏性规则项,BP算法推导公式中要加上,这里需要自行编写sparseAutoencoderCost.m

function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...

                                             lambda, sparsityParam, beta, data)



% visibleSize: the number of input units (probably 64) 

% hiddenSize: the number of hidden units (probably 25) 

% lambda: weight decay parameter

% sparsityParam: The desired average activation for the hidden units (denoted in the lecture

%                           notes by the greek alphabet rho, which looks like a lower-case "p").

% beta: weight of sparsity penalty term

% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 

  

% The input theta is a vector (because minFunc expects the parameters to be a vector). 

% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 

% follows the notation convention of the lecture notes. 



W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);

W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);

b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);

b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);



% Cost and gradient variables (your code needs to compute these values). 

% Here, we initialize them to zeros. 

cost = 0;

W1grad = zeros(size(W1)); 

W2grad = zeros(size(W2));

b1grad = zeros(size(b1)); 

b2grad = zeros(size(b2));



%% ---------- YOUR CODE HERE --------------------------------------

%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,

%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.

%

% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.

% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions

% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with

% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 

% with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 

% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 

% of the lecture notes (and similarly for W2grad, b1grad, b2grad).

% 

% Stated differently, if we were using batch gradient descent to optimize the parameters,

% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 

% 



Jcost = 0;%直接误差

Jweight = 0;%权值惩罚

Jsparse = 0;%稀疏性惩罚

[n m] = size(data);%m为样本的个数,n为样本的特征数



%前向算法计算各神经网络节点的线性组合值和active值

z2 = W1*data+repmat(b1,1,m);%注意这里一定要将b1向量复制扩展成m列的矩阵

a2 = sigmoid(z2);

z3 = W2*a2+repmat(b2,1,m);

a3 = sigmoid(z3);





% 计算预测产生的误差

Jcost = (0.5/m)*sum(sum((a3-data).^2));



%计算权值惩罚项

Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));



%计算稀释性规则项

rho = (1/m).*sum(a2,2)  ;%求出第一个隐含层的平均值向量

Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...

        (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));



%损失函数的总表达式

cost = Jcost+lambda*Jweight+beta*Jsparse;



%反向算法求出每个节点的误差值

d3 = -(data-a3).*(a3.*(1-a3));

sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因为加入了稀疏规则项,所以

                                                             %计算偏导时需要引入该项 

d2 = (W2'*d3+repmat(sterm,1,m)).*(a2.*(1-a2)); 



%计算W1grad 

W1grad = W1grad+d2*data';

W1grad = (1/m)*W1grad+lambda*W1;



%计算W2grad  

W2grad = W2grad+d3*a2';

W2grad = (1/m).*W2grad+lambda*W2;



%计算b1grad 

b1grad = b1grad+sum(d2,2);

b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来



%计算b2grad 

b2grad = b2grad+sum(d3,2);

b2grad = (1/m)*b2grad;





%-------------------------------------------------------------------

% After computing the cost and gradient, we will convert the gradients back

% to a vector format (suitable for minFunc).  Specifically, we will unroll

% your gradient matrices into a vector.



grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];



end



%-------------------------------------------------------------------

% Here's an implementation of the sigmoid function, which you may find useful

% in your computation of the costs and the gradients.  This inputs a (row or

% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 



function sigm = sigmoid(x)        % 定义sigmoid函数

  

    sigm = 1 ./ (1 + exp(-x));

end

 

Step 3:求解的 梯度检验

验证梯度下降是否正确,这个在教程第三节也有介绍,比较简单,在computeNumericalGradient.m中返回梯度检验后的值即可,computeNumericalGradient.m是在checkNumericalGradient.m中调用的,而checkNumericalGradient.m已经给出,不需要我们自己编写。

function numgrad = computeNumericalGradient(J, theta)

% numgrad = computeNumericalGradient(J, theta)

% theta: a vector of parameters

% J: a function that outputs a real-number. Calling y = J(theta) will return the

% function value at theta. 

  

% Initialize numgrad with zeros

numgrad = zeros(size(theta));



%% ---------- YOUR CODE HERE --------------------------------------

% Instructions: 

% Implement numerical gradient checking, and return the result in numgrad.  

% (See Section 2.3 of the lecture notes.)

% You should write code so that numgrad(i) is (the numerical approximation to) the 

% partial derivative of J with respect to the i-th input argument, evaluated at theta.  

% I.e., numgrad(i) should be the (approximately) the partial derivative of J with 

% respect to theta(i).

%                

% Hint: You will probably want to compute the elements of numgrad one at a time. 



epsilon = 1e-4;

n = size(theta,1);

E = eye(n,1);

for i = 1:n
   E(i) = 1; delta
= E*epsilon; numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);
   E(i) = 0; end
%% --------------------------------------------------------------- end

 

Step 4:训练自稀疏编码器

整个训练过程使用的是L-BFGS求解,比教程中介绍的主要介绍批量SGD要快很多,具体原理我也不知道,而且训练过程已经给出,这一段不需要我们自己编写

 

Step 5:输出可视化结果

训练结束后,输出训练得到的权重矩阵W1,结果同时也会保存在weights.jpg中,这一段也不需要我们编写( 第一次)

结果图如下:

Exercise:Sparse Autoencoder

(感觉自己训练出来的这个没有标准的那么明显的线条,看就了还有点类似错误示例的第3个,不过重新仔细看还是有线条感的,可能是因为隐藏层只有20个,训练的也没有25个的彻底)

另外,查了一下内存不足的解决方法,据说在matlab命令行输入pack,可以释放一些内存。但是我觉得还是终究治标不治本,最好的方法还是升级64位操作系统,去添加内存条吧~

 

剩下的.m文件都不需要我们自己编写(修改隐藏层的节点数在train.m中),不过也顺带附上吧

function [] = checkNumericalGradient()

% This code can be used to check your numerical gradient implementation 

% in computeNumericalGradient.m

% It analytically evaluates the gradient of a very simple function called

% simpleQuadraticFunction (see below) and compares the result with your numerical

% solution. Your numerical gradient implementation is incorrect if

% your numerical solution deviates too much from the analytical solution.

  

% Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.)

x = [4; 10];

[value, grad] = simpleQuadraticFunction(x);



% Use your code to numerically compute the gradient of simpleQuadraticFunction at x.

% (The notation "@simpleQuadraticFunction" denotes a pointer to a function.)

numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);



% Visually examine the two gradient computations.  The two columns

% you get should be very similar. 

disp([numgrad grad]);

fprintf('The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n');



% Evaluate the norm of the difference between two solutions.  

% If you have a correct implementation, and assuming you used EPSILON = 0.0001 

% in computeNumericalGradient.m, then diff below should be 2.1452e-12 

diff = norm(numgrad-grad)/norm(numgrad+grad);

disp(diff); 

fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n');

end





  

function [value,grad] = simpleQuadraticFunction(x)

% this function accepts a 2D vector as input. 

% Its outputs are:

%   value: h(x1, x2) = x1^2 + 3*x1*x2

%   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 

% Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming

% that computeNumericalGradients will use only the first returned value of this function.



value = x(1)^2 + 3*x(1)*x(2);



grad = zeros(2, 1);

grad(1)  = 2*x(1) + 3*x(2);

grad(2)  = 3*x(1);



end
checkNumericalGradient.m
function theta = initializeParameters(hiddenSize, visibleSize)



%% Initialize parameters randomly based on layer sizes.

r  = sqrt(6) / sqrt(hiddenSize+visibleSize+1);   % we'll choose weights uniformly from the interval [-r, r]

W1 = rand(hiddenSize, visibleSize) * 2 * r - r;

W2 = rand(visibleSize, hiddenSize) * 2 * r - r;



b1 = zeros(hiddenSize, 1);

b2 = zeros(visibleSize, 1);



% Convert weights and bias gradients to the vector form.

% This step will "unroll" (flatten and concatenate together) all 

% your parameters into a vector, which can then be used with minFunc. 

theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];





end
initializeParameter
function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)



% This function visualizes filters in matrix A. Each column of A is a

% filter. We will reshape each column into a square image and visualizes

% on each cell of the visualization panel. 

% All other parameters are optional, usually you do not need to worry

% about it.

% opt_normalize: whether we need to normalize the filter so that all of

% them can have similar contrast. Default value is true.

% opt_graycolor: whether we use gray as the heat map. Default is true.

% cols: how many columns are there in the display. Default value is the

% squareroot of the number of columns in A.

% opt_colmajor: you can switch convention to row major for A. In that

% case, each row of A is a filter. Default value is false.

warning off all



if ~exist('opt_normalize', 'var') || isempty(opt_normalize)

    opt_normalize= true;

end



if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)

    opt_graycolor= true;

end



if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)

    opt_colmajor = false;

end



% rescale

A = A - mean(A(:));



if opt_graycolor, colormap(gray); end



% compute rows, cols

[L M]=size(A);

sz=sqrt(L);

buf=1;

if ~exist('cols', 'var')

    if floor(sqrt(M))^2 ~= M

        n=ceil(sqrt(M));

        while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end

        m=ceil(M/n);

    else

        n=sqrt(M);

        m=n;

    end

else

    n = cols;

    m = ceil(M/n);

end





array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));



if ~opt_graycolor

    array = 0.1.* array;

end





if ~opt_colmajor

    k=1;

    for i=1:m

        for j=1:n

            if k>M, 

                continue; 

            end

            clim=max(abs(A(:,k)));

            if opt_normalize

                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;

            else

                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));

            end

            k=k+1;

        end

    end

else

    k=1;

    for j=1:n

        for i=1:m

            if k>M, 

                continue; 

            end

            clim=max(abs(A(:,k)));

            if opt_normalize

                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;

            else

                array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);

            end

            k=k+1;

        end

    end

end



if opt_graycolor

    h=imagesc(array,'EraseMode','none',[-1 1]);

else

    h=imagesc(array,'EraseMode','none',[-1 1]);

end

axis image off



drawnow;



warning on all
display_network

 

你可能感兴趣的:(encode)