mahout之Kmeans使用及结果分析

Mahout-Kmeans

1,两个输入路径:一个是数据的点;一个是初始集群。

     点的输入文件是SequenceFile(Key, VectorWritable)格式;

      而初始集群的输入文件格式是SequenceFiles(Text, Cluster | Canopy)

2,每次迭代会产生一个输出目录“cluster-N”,输出文件格式为SequenceFile(Text, Cluster),表示第N次迭代后产生的clusters。

3,输出目录“clusteredPoints”,表示最终的集群结果,即每个集群中所包含的Points。

4,解压安装Mahout0.7版本。

5,Running k-Means Clustering

 

 

bin/mahout kmeans \
    -i <input vectors directory> \
    -c <input clusters directory> \
    -o <output working directory> \
    -k <optional number of initial clusters to sample from input vectors> \
//如果指定-k参数,-c参数指定的目录将被overwitten随机的k个点。
    -dm <DistanceMeasure> \
    -x <maximum number of iterations> \
    -cd <optional convergence delta. Default is 0.5> \
    -ow <overwrite output directory if present>
    -cl <run input vector clustering after computing Canopies> 
 //很重要,很重要,如果没有指定这个参数,只能得到最后的集群信息,不能得到集群中的Points
    -xm <execution method: sequential or mapreduce>

 

执行命令如下:

 

./mahout kmeans -i archer/kmeans_in -c archer/kmeans_clusters -o archer/kmeans_out -k 50 -x 10 -ow –cl

 

6,执行结果,会在输出目录下,生成一个clusterPoints目录,读取SequenceFile,发现cluster中的点是以向量表示的,这样不太直观,因此对输入文件做了以下处理。

7,点的输入文件是SequenceFile(Key, VectorWritable)格式,因此,将VectorWritable中的Vector,使用NamedVector类型,这样每个点可以有一个名称,便于表示。(例如:每个user的特征向量,可以将userID作为向量名称,这样可以方便地对K-means的结果进行分析表示,得到每个cluster下有哪些user。)

处理输入文件格式的代码如下(注:本程序中,输入向量是0,1组成的):

 

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.mahout.math.NamedVector;
import org.apache.mahout.math.SequentialAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
 
import java.io.IOException;
import java.net.URI;
import java.util.StringTokenizer;
 
public class Convert2Kmeans {
 
//表示向量的维数
    public static int Cardinality = 6000;
 
    public static void main(String[] args) throws IOException {
 
        String uri = "/tmp/snsVec2.seq";
        Configuration conf = new Configuration();
        conf.set("fs.default.name", "namenode文件系统");
        FileSystem fs = FileSystem.get(URI.create(uri), conf);
 
        SequenceFile.Reader reader = null;
//读取原来的SequenceFile,将向量封装成具有Name属性的向量
        reader = new SequenceFile.Reader(fs, new Path("/kmeans_in_seq/snsVec.seq"), conf);
        Writable key = (Writable) ReflectionUtils.newInstance(reader.getKeyClass(), conf);
        Writable val = (Writable) ReflectionUtils.newInstance(reader.getValueClass(), conf);
        try {
 
            writer = SequenceFile.createWriter(fs,
                    conf, new Path(uri), IntWritable.class,
                    VectorWritable.class, CompressionType.BLOCK);
 
            final IntWritable key1 = new IntWritable();
            final VectorWritable value = new VectorWritable();
 
            int lineNum = 0;
            Vector vector = null;
            while (reader.next(key, val)) {
                int index = 0;
                StringTokenizer st = new StringTokenizer(val.toString());
// 将SequentialAccessSparseVector进一步封装成NamedVector类型
                vector = new NamedVector(new SequentialAccessSparseVector(Cardinality), lineNum + "");
                while (st.hasMoreTokens()) {
                    if (Integer.parseInt(st.nextToken()) == 1) {
                        vector.set(index, 1);
                    }
                    index++;
                }
                key1.set(lineNum++);
                value.set(vector);
                writer.append(key, value);
            }
        } finally {
            writer.close();
            reader.close();
        }
    }
}

 

 

8,分析clusterPoints目录结果

clusterPoints目录输出格式是:SequenceFile(IntWritable, WeightedVectorWritable),读取该文件,获取Vectorname即可。代码如下:

 

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.mahout.clustering.classify.WeightedVectorWritable;
import org.apache.mahout.math.NamedVector;
 
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.HashMap;
import java.util.Set;
 
public class ClusterOutput {
    public static void main(String[] args) {
        try {
            BufferedWriter bw;
            Configuration conf = new Configuration();
            conf.set("fs.default.name", "namenode文件系统");
            FileSystem fs = FileSystem.get(conf);
 
            SequenceFile.Reader reader = null;
            reader = new SequenceFile.Reader(fs, new Path("/kmeans_out/clusteredPoints/part-m-00000"), conf);
 
            //将分组信息写到文件uidOfgrp.txt,每行格式为 uid \t groupID
            bw = new BufferedWriter(new FileWriter(new File("D:\\uidOfgrp.txt")));
            HashMap<String, Integer> clusterIds;
            clusterIds = new HashMap<String, Integer>(120);
            IntWritable key = new IntWritable();
            WeightedVectorWritable value = new WeightedVectorWritable();
            while (reader.next(key, value)) {
                NamedVector vector = (NamedVector) value.getVector();
               //得到Vector的Name标识
                String vectorName = vector.getName();
                bw.write(vectorName + "\t" + key.toString() + "\n");
               //更新每个group的大小
                if (clusterIds.containsKey(key.toString())) {
                    clusterIds.put(key.toString(), clusterIds.get(key.toString()) + 1);
                } else
                    clusterIds.put(key.toString(), 1);
            }
            bw.flush();
            reader.close();
            //将每个group的大小,写入grpSize文件中
            bw = new BufferedWriter(new FileWriter(new File("D:\\grpSize.txt")));
            Set<String> keys = clusterIds.keySet();
            for (String k : keys) {
                bw.write(k + " " + clusterIds.get(k) + "\n");
            }
            bw.flush();
            bw.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
} 

 

 

你可能感兴趣的:(Mahout,kmeans)