实现PyTorch/ONNX自定义节点操作的TensorRT部署

参考一

下面是基本步骤:

  1. 加载训练好的bev transformer网络权重参数:
import torch
from model import Model

model = Model()
model.load_state_dict(torch.load("path/to/weights"))
  1. 定义新的自定义操作:
import torch
from torch.autograd import Function

class CustomOp(Function):
    @staticmethod
    def forward(ctx, input, weight):
        # 这里实现自定义操作的前向传递
        output = ...
        ctx.save_for_backward(input, weight)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        # 这里实现自定义操作的反向传递
        input, weight = ctx.saved_tensors
        grad_input = ...
        grad_weight = ...
        return grad_input, grad_weight
  1. 将自定义操作应用于transformer模块的网络层:
import torch.nn as nn

class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        self.self_attn = CustomOp()  # 将自定义操作应用于transformer模块的网络层

    def forward(self, x):
        output = self.self_attn(x, weight)
        return output
  1. 加载模型和权重参数,并转换为ONNX格式:
import onnx
from onnx import TensorProto, helper

# 将模型和权重参数转换为ONNX格式
input_shape = (1,3,224,224)
input_names = ['input']
output_names = ['output']
x = torch.randn(input_shape)
torch.onnx.export(model, x, 'model.onnx', input_names=input_names, output_names=output_names)

# 加载ONNX模型
model = onnx.load("model.onnx")

# 新增自定义操作,并将其插入ONNX模型
op_def = helper.make_node(
    "CustomOp",
    inputs=["input", "weight"],
    outputs=["output"]
)
model.graph.node.append(op_def)

# 修改输入和输出张量的数据类型为float32
for i in range(len(model.graph.input)):
    model.graph.input[i].type.tensor_type.elem_type = TensorProto.FLOAT
for i in range(len(model.graph.output)):
    model.graph.output[i].type.tensor_type.elem_type = TensorProto.FLOAT

# 保存修改后的ONNX模型
onnx.save(model, "model_custom_op.onnx")

这样,我们就获得了带有自定义操作的ONNX模型。

参考二

首先,我们需要将原始PyTorch模型转换为ONNX格式,这可以通过以下代码完成:

import torch
import onnx
import onnxruntime

# Load the model
model = torch.load("model.pt")

# Set the model to evaluation mode
model.eval()

# Dummy input for the model
input_names = ["input"]
output_names = ["output"]
dummy_input = torch.randn(1, 3, 224, 224)

# Export the model to ONNX
onnx_path = "model.onnx"
torch.onnx.export(model, dummy_input, onnx_path, input_names=input_names, output_names=output_names, opset_version=12)

接下来,我们需要使用ONNX库加载模型,并替换转换器模块的网络层。我们可以使用ONNX的Graph和Model API来实现这个过程。

import onnx
from onnx import numpy_helper
from onnx import ModelProto
import onnx.tools

# Load the ONNX model
model_path = 'model.onnx'
onnx_model = onnx.load(model_path)

# Find the Transformer module in the ONNX graph
for node in onnx_model.graph.node:
    if 'Transformer' in node.name:
        transformer_node = node

# Find the weights of the Transformer module
for initializer in onnx_model.graph.initializer:
    if transformer_node.name in initializer.name:
        transformer_weights = numpy_helper.to_array(initializer)

# Replace the Transformer module with custom node
from onnx.helper import make_node
custom_node = make_node(op_type='CustomOp', inputs=transformer_node.input, outputs=transformer_node.output, name=transformer_node.name)
onnx_model.graph.node.remove(transformer_node)
onnx_model.graph.node.append(custom_node)

# Save the modified ONNX model
onnx.checker.check_model(onnx_model)
onnx.save(onnx_model, 'custom_model.onnx')

在代码中,我们首先加载了ONNX模型,然后遍历图寻找我们想要替换的Transformer模块。然后,我们在图中找到该层的权重,并使用其创建一个新的自定义节点,然后通过删除已有的Transformer节点,并将自定义节点添加到图中来替换它。最后,我们将修改后的模型保存为新的ONNX文件。

接下来,我们需要使用TensorRT来加载我们的自定义模型并运行推理。在TensorRT中使用自定义操作需要实现自定义插件。TensorRT提供了C++ API和Python API来实现自定义插件。这里我们将介绍如何使用Python API来实现自定义插件。

首先,我们需要实现我们的自定义操作。我们可以使用C ++编写自定义操作,然后使用Python API将其转换为TensorRT插件。这里,我们将为您提供一个示例代码,以了解如何将PyTorch中的自定义操作转换为TensorRT插件。

// Sample code for a custom operation to replace the Transformer module in PyTorch

#include "NvInfer.h"
#include "NvInferPlugin.h"

int main(int argc, char** argv) {
    // Create a new logger for TensorRT
    auto logger = nvinfer1::createLogger(nvinfer1::ILogger::Severity::kINFO);

    // Create a TensorRT builder and network
    auto builder = nvinfer1::createInferBuilder(logger);
    auto network = builder->createNetwork();

    // Define the input tensor shape
    nvinfer1::Dims input_shape;
    input_shape.nbDims = 4;
    input_shape.d[0] = 1;
    input_shape.d[1] = 3;
    input_shape.d[2] = 224;
    input_shape.d[3] = 224;

    // Define the input tensor
    auto input = network->addInput("input", nvinfer1::DataType::kFLOAT, input_shape);

    // Define the output tensor shape
    nvinfer1::Dims output_shape;
    output_shape.nbDims = 4;
    output_shape.d[0] = 1;
    output_shape.d[1] = 3;
    output_shape.d[2] = 224;
    output_shape.d[3] = 224;

    // Define the output tensor
    auto output = network->addOutput("output", nvinfer1::DataType::kFLOAT, output_shape);

    // Create a new plugin layer
    auto plugin_factory = getPluginRegistry()->getPluginFactory("CustomOp");
    std::vector<nvinfer1::PluginField> plugin_fields;
    nvinfer1::PluginFieldCollection plugin_field_collection;
    plugin_field_collection.nbFields = static_cast<int>(plugin_fields.size());
    plugin_field_collection.fields = plugin_fields.data();
    auto plugin_layer = plugin_factory->createPlugin("CustomOp", &plugin_field_collection);

    // Add the plugin layer to the network
    nvinfer1::IPluginV2Layer* plugin = network->addPluginV2(&input, 1, *plugin_layer);

    // Build the TensorRT engine
    auto engine = builder->buildCudaEngine(*network);

    // Serialize the engine to a file
    nvinfer1::IHostMemory* serialized_engine = engine->serialize();
    std::ofstream engine_file("engine.trt", std::ios::binary);
    engine_file.write(static_cast<char*>(serialized_engine->data()), serialized_engine->size());

    // Destroy the objects
    serialized_engine->destroy();
    engine->destroy();
    plugin_layer->destroy();
    network->destroy();
    builder->destroy();
    logger->destroy();

    return 0;
}

这里,我们定义了一个新的TensorRT Builder和Network,然后添加了我们的自定义OP。请注意,我们在创建自定义层时使用了PluginFactory,这需要从TensorRT插件注册表获取。PluginFactory需要插件类型名称来创建自定义插件。

接下来,我们使用以下代码将C ++插件转换为Python插件。

import tensorrt as trt
import numpy as np

# Define our custom plugin layer with an instance normalization operation
class CustomOpLayer(trt.PluginLayer):
    def __init__(self, context, max_batch_size, *args, **kwargs):
        super().__init__(context, max_batch_size)
        
    def get_plugin_fields(self):
        # Define the plugin fields
        fields = [trt.PluginField("norm", np.array([1.0], dtype=np.float32), trt.PluginFieldType.FLOAT32)]

        # Return the plugin fields
        return fields
        
    def get_output_type(self, idx, input_types):
        # Return the output types of the plugin layer
        return input_types[0]

    def plugin_op(self):
        # Implement the custom plugin operation
        return input_tensor * self.norm
        
    def create_plugin():
        # Create the plugin layer
        layer = CustomOpLayer()
        # Return the plugin layer
        return layer
    
# Register the plugin with TensorRT
trt.init_libnvinfer_plugins(logger, '')
plugin_registry = trt.get_plugin_registry()
plugin_creator = plugin_registry.get_plugin_creator("CustomOp", "1", "") 
plugin = plugin_creator.create_plugin('CustomOp', trt.PluginFieldCollection())

在代码中,我们定义了一个自定义层,该层包含一个实例归一化操作,并重写了基类中的get_plugin_fields,get_output_type和plugin_op方法。然后,我们通过使用get_plugin_registry来注册自定义插件,并使用get_plugin_creator和create_plugin方法来创建TensorRT插件。

现在,我们已经成功地将PyTorch模型转换为带有自定义操作的ONNX模型,并使用TensorRT API将其转换为可用于推理的TensorRT引擎和插件。我们可以使用如下代码来加载TensorRT引擎并运行推理:

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit

# Load the serialized engine
serialized_engine = open("engine.trt", "rb").read()

# Create a TensorRT runtime
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))

# Deserialize the engine
engine = runtime.deserialize_cuda_engine(serialized_engine)

# Create a TensorRT execution context
context = engine.create_execution_context()

# Allocate device memory for inputs and outputs
input = cuda.mem_alloc(1 * 3 * 224 * 224 * 4)
output = cuda.mem_alloc(1 * 3 * 224 * 224 * 4)

# Load the input data to device memory
input_data = np.zeros((1, 3, 224, 224), dtype=np.float32)
cuda.memcpy_htod(input, input_data.ravel())

# Run inference on the device
context.execute(1, [int(input), int(output)])

# Copy the output data from device memory to host memory
output_data = np.empty((1, 3, 224, 224), dtype=np.float32)
cuda.memcpy_dtoh(output_data.ravel(), output)

# Print the output data
print(output_data)

在代码中,我们首先使用TensorRT运行时和序列化引擎初始化TensorRT引擎。然后,我们为输入和输出分配设备内存,并将输入数据加载到设备内存中。最后,我们在设备上运行推理,并将输出数据从设备内存复制到主机内存。

这样就可以实现PyTorch自定义操作的TensorRT部署了。

参考三

以下是一个示例代码,用于将transformer模块的网络层融合为一个自定义的ONNX节点,并使用TensorRT插件实现。

首先,需要安装必要的Python库和TensorRT。以下是安装TensorRT的步骤:

  1. 下载TensorRT并解压到合适的位置:https://developer.nvidia.com/nvidia-tensorrt-download
  2. 安装TensorRT Python库:pip install tensorrt
  3. 安装TensorRT Python插件库:pip install tensorrt-plugin

接下来,使用以下代码将transformer模块的网络层融合为一个自定义的ONNX节点:

import onnx
from onnx import helper, numpy_helper, shape_inference

# Load the trained model
model_file = 'model.pt'
model = torch.load(model_file)

# Get the weights of the transformer module
transformer_weights = model.transformer.state_dict()

# Create the inputs and outputs for the new custom node
inputs = [
    helper.make_tensor_value_info('input', onnx.TensorProto.FLOAT, ['batch_size', 'seq_len', 'hidden_size']),
    helper.make_tensor_value_info('weights', onnx.TensorProto.FLOAT, ['num_layers', '3', 'hidden_size', 'hidden_size']),
    helper.make_tensor_value_info('bias', onnx.TensorProto.FLOAT, ['num_layers', '3', 'hidden_size']),
]
outputs = [
    helper.make_tensor_value_info('output', onnx.TensorProto.FLOAT, ['batch_size', 'seq_len', 'hidden_size'])
]

# Create the new custom node
custom_node = helper.make_node(
    'MyTransform',
    inputs=['input', 'weights', 'bias'],
    outputs=['output'],
)

# Create the new ONNX graph with the custom node
graph_def = onnx.GraphProto()
graph_def.node.extend([custom_node])
graph_def.input.extend(inputs)
graph_def.output.extend(outputs)

# Set the shape information for the inputs and outputs
graph_def = shape_inference.infer_shapes(graph_def)

# Add the weights to the graph
for name, weight in transformer_weights.items():
    tensor = numpy_helper.from_array(weight.numpy(), name=name)
    graph_def.initializer.append(tensor)

# Save the new ONNX graph
onnx_file = 'model.onnx'
onnx.save(graph_def, onnx_file)

注意,这里假设已经使用PyTorch训练好了一个transformer模型并保存为model.pt文件,需要将其加载到内存中。此外,在新的ONNX图中,使用了自定义节点MyTransform,需要在后续代码中实现这个节点。

接下来,使用TensorRT插件实现自定义节点。以下是示例代码:

import tensorrt as trt
import numpy as np

# Define the custom plugin and create a TensorRT plugin registry
class MyTransformPlugin(trt.IPluginV2DynamicExt):
    def __init__(self, weights, bias):
        self.weights = weights
        self.bias = bias

    def get_plugin_type(self):
        return 'MyTransform'

    def get_plugin_version(self):
        return '1'

    def get_output_dtype(self, idx, layer):
        return trt.DataType.FLOAT

    def get_output_dimensions(self, idx, inputs, outputs, network):
        return inputs[0].shape

    def configure_plugin(self, inputs, outputs, layers, max_batch_size):
        self.batch_size = inputs[0].shape[0]
        self.seq_len = inputs[0].shape[1]
        self.hidden_size = inputs[0].shape[2]
        self.num_layers = self.weights.shape[0]
        self.stream = None

    def enqueue(self, inputs, outputs, bindings, workspace, stream):
        self.stream = stream
        input_buf = inputs[0].as_gpu_tensor()  # [batch_size, seq_len, hidden_size]
        weights_buf = self.weights.as_gpu_tensor()  # [num_layers, 3, hidden_size, hidden_size]
        bias_buf = self.bias.as_gpu_tensor()  # [num_layers, 3, hidden_size]
        output_buf = outputs[0].as_gpu_tensor()  # [batch_size, seq_len, hidden_size]

        # Use CUDA kernel to perform the transformation
        cuda_module = None  # Load the CUDA module here
        cuda_module.my_transform(
            input_buf, weights_buf, bias_buf, output_buf, 
            self.batch_size, self.seq_len, self.hidden_size, self.num_layers, 
            stream.handle
        )

    def get_workspace_size(self, max_batch_size):
        return 0

    def destroy(self):
        pass

    def clone(self):
        return MyTransformPlugin(self.weights, self.bias)

plugin_registry = trt.PluginRegistry()

# Register the plugin with the TensorRT plugin registry
def register_plugin():
    plugin_creator = trt.PluginCreator(
        name='MyTransform', 
        plugin_version='1', 
        plugin_creator=MyTransformPlugin
    )
    plugin_registry.register_creator(plugin_creator, 'MyTransform')

register_plugin()

# Load the ONNX model with the custom node
onnx_file = 'model.onnx'
model_stream = open(onnx_file, 'rb')
model_proto = onnx.load(model_stream)

# Create the TensorRT engine from the ONNX model
trt_logger = trt.Logger()
builder = trt.Builder(trt_logger)
builder.max_batch_size = 1
builder.fp16_mode = True
engine = builder.build_engine(model_proto, plugin_registry)

参考四

这个问题涉及到多个步骤,我尝试简单介绍一下:

  1. 加载模型权重参数

使用PyTorch加载模型权重参数,尤其是transformer层的权重参数,可以使用以下代码:

import torch

model = MyModel()  # 假设MyModel是你的模型
state_dict = torch.load("model_weights.pth")
model.load_state_dict(state_dict)
  1. 定义自定义op

在PyTorch中定义自定义op的方式是通过继承torch.autograd.Function类并实现forwardbackward方法。例如,以下是一个简单的自定义op示例:

import torch

class MyCustomOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input_tensor, weight_tensor):
        # 前向传递的逻辑
        output_tensor = input_tensor.mm(weight_tensor.t())
        ctx.save_for_backward(input_tensor, weight_tensor)
        return output_tensor
    
    @staticmethod
    def backward(ctx, grad_output):
        # 反向传递的逻辑
        input_tensor, weight_tensor = ctx.saved_tensors
        grad_input = grad_output.mm(weight_tensor)
        grad_weight = grad_output.t().mm(input_tensor)
        return grad_input, grad_weight

在这个例子中,自定义op将输入张量input_tensor与权重张量weight_tensor相乘,并返回结果。在反向传递中,它计算输入张量和权重张量同时对梯度的贡献。

  1. 使用自定义op替换transformer层

为了使用自定义op替换transformer层,你需要知道transformer层的具体实现。在PyTorch中,transformer层通常是一个torch.nn.TransformerEncoderLayer对象,它包含了多个子层,如self-attention层和全连接层。你需要将这些子层替换为自定义op。

以下是一个示例代码,假设你要将transformer层的全连接层替换为自定义op:

import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.transformer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
        self.custom_op = MyCustomOp.apply

    def forward(self, x):
        # 获取transformer层的各个子层
        self_attn = self.transformer.self_attn
        linear1 = self.transformer.linear1
        dropout = self.transformer.dropout
        linear2 = self.transformer.linear2
        norm1 = self.transformer.norm1
        norm2 = self.transformer.norm2

        # 使用自定义op替换linear2层
        x = self_attn(x, x, x)[0]
        x = linear1(x)
        x = dropout(x)
        x = self.custom_op(x, linear2.weight)
        x = norm1(x)
        x = x + linear2.bias
        x = norm2(x)

        # 返回输出
        return x

在这个例子中,注意到我们使用了MyCustomOp.apply而不是直接调用MyCustomOp。这是因为PyTorch要求自定义op使用apply方法来处理前向和反向传递逻辑。

  1. 将PyTorch模型转换为ONNX模型

使用PyTorch将模型导出为ONNX格式,可以使用以下代码:

import torch.onnx

model = MyModel()  # 假设MyModel是你的模型
input_shape = (1, 512)  # 假设输入张量的形状为(1, 512)
output_path = "my_model.onnx"
model.eval()

# 导出为ONNX模型
x = torch.randn(input_shape)
torch.onnx.export(model, x, output_path, input_names=["input"], output_names=["output"])

在这个例子中,我们使用torch.onnx.export方法将PyTorch模型导出为ONNX模型。注意要将模型设置为eval模式并提供模型输入和输出的名称。

  1. 使用TensorRT加载自定义op

使用TensorRT加载ONNX模型需要使用TensorRT的C++ API。以下是一个简单的示例代码,假设你要使用TensorRT加载带有自定义op的ONNX模型:

#include "NvInfer.h"
#include "NvOnnxParser.h"

using namespace nvinfer1;
using namespace nvonnxparser;

void loadModelWithCustomOp(const std::string& model_path)
{
    // 创建TensorRT builder、network和ONNX解析器
    IBuilder* builder = createInferBuilder(gLogger);
    INetworkDefinition* network = builder->createNetwork();
    IParser* parser = createParser(*network, gLogger);

    // 解析ONNX模型并检查是否成功
    if (!parser->parseFromFile(model_path.c_str(), 1))
    {
        std::cerr << "Failed to parse ONNX model" << std::endl;
        exit(EXIT_FAILURE);
    }

    // 注册自定义op
    const char* op_name = "MyCustomOp";
    const char* plugin_name = "MyCustomOpPlugin";
    MyCustomOpPluginCreator plugin_creator;
    plugin_creator.setPluginName(plugin_name);
    bool registered = parser->registerPlugin(op_name, &plugin_creator);
    if (!registered)
    {
        std::cerr << "Failed to register custom op" << std::endl;
        exit(EXIT_FAILURE);
    }

    // 创建推理引擎
    builder->setMaxBatchSize(1);
    builder->setMaxWorkspaceSize(1 << 30);
    ICudaEngine* engine = builder->buildCudaEngine(*network);

    // 释放资源
    parser->destroy();
    network->destroy();
    builder->destroy();
    engine->destroy();
}

在这个例子中,我们使用createParser方法创建ONNX解析器,并使用parseFromFile方法从文件中解析ONNX模型。然后,我们使用MyCustomOpPluginCreator类创建自定义op的插件,并使用registerPlugin方法注册自定义op。最后,我们使用buildCudaEngine方法创建推理引擎。

注意到我们需要为自定义op编写一个插件,并将其注册到ONNX解析器中。这是因为自定义op并不是TensorRT原生支持的操作。插件的编写和注册需要额外的代码,我在这里就不展开了。如果你想知道更多细节,可以参阅TensorRT的官方文档和代码示例。

希望这些代码能够帮助你解决问题!

参考五

对于这个问题,需要进行以下步骤:

  1. 安装必要的库和工具

首先需要安装一些必要的库和工具,包括PyTorch、ONNX、TensorRT等。可以通过以下命令安装:

pip install torch==1.6.0 onnx==1.7.0 tensorrt==7.2.2.3 pycuda==2020.1
  1. 加载训练好的模型权重

使用PyTorch加载训练好的模型权重,并将其转换为ONNX格式。可以参考以下代码:

import torch
import onnx

# 加载PyTorch模型
model = torch.load('model.pth')

# 转换为ONNX格式
dummy_input = torch.randn(1, 3, 224, 224)
input_names = ['input']
output_names = ['output']
torch.onnx.export(model, dummy_input, 'model.onnx', input_names=input_names, output_names=output_names, opset_version=11)
  1. 定义自定义节点

定义一个自定义节点来融合Transformer的所有子层。可以参考以下代码:

import onnx
from onnx import helper, shape_inference, TensorProto

class TransformerFusion(helper.Node):
    def __init__(self, transformer_inputs, transformer_outputs, name=None):
        super().__init__('TransformerFusion', transformer_inputs, transformer_outputs, name=name)

def transformer_fusion(inputs, outputs, name=None):
    node = TransformerFusion(inputs, outputs, name=name)
    return node
  1. 加载模型并替换子层

使用ONNX API加载模型,并使用自定义节点替换Transformer的所有子层。可以参考以下代码:

# 加载ONNX模型
model = onnx.load('model.onnx')

# 替换Transformer的所有子层
for node in model.graph.node:
    if node.op_type == 'MultiHeadAttention':
        # 替换MultiHeadAttention子层
        inputs = []
        for i in range(len(node.input)):
            if i == 0:
                inputs.append(node.input[i])
            else:
                inputs.append('dummy')
        outputs = node.output
        transformer_fusion_node = transformer_fusion(inputs, outputs)
        model.graph.node.remove(node)
        model.graph.node.extend([transformer_fusion_node])
    elif node.op_type == 'LayerNormalization':
        # 替换LayerNormalization子层
        inputs = []
        for i in range(len(node.input)):
            if i == 0:
                inputs.append(node.input[i])
            else:
                inputs.append('dummy')
        outputs = node.output
        transformer_fusion_node = transformer_fusion(inputs, outputs)
        model.graph.node.remove(node)
        model.graph.node.extend([transformer_fusion_node])

# 推断模型形状
onnx.checker.check_model(model)
onnx.shape_inference.infer_shapes(model)
  1. 导出有自定义op的ONNX模型

使用ONNX API导出带有自定义op的ONNX模型。可以参考以下代码:

# 导出有自定义op的ONNX模型
onnx.save(model, 'model_fused.onnx')
  1. 使用TensorRT进行推断

使用TensorRT进行推断。可以参考以下代码:

import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import tensorrt as trt

# 定义TensorRT logger
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

# 加载TensorRT引擎
def load_engine():
    with open('model.plan', 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    return engine

# 创建TensorRT上下文
def create_context():
    engine = load_engine()
    context = engine.create_execution_context()
    return engine, context

# 推断函数
def infer(context, inputs):
    inputs = [inp.astype(np.float32) for inp in inputs]
    outputs = [np.empty(output.shape, dtype=np.float32) for output in outputs]
    stream = cuda.Stream()

    bindings = []
    for inp in inputs:
        bindings.append(int(inp.gpudata))
    for out in outputs:
        bindings.append(int(out.gpudata))

    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
    stream.synchronize()

    return [out.get() for out in outputs]
  1. 完整示例代码
import torch
import onnx
from onnx import helper, shape_inference, TensorProto
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import tensorrt as trt

# 定义自定义节点
class TransformerFusion(helper.Node):
    def __init__(self, transformer_inputs, transformer_outputs, name=None):
        super().__init__('TransformerFusion', transformer_inputs, transformer_outputs, name=name)

def transformer_fusion(inputs, outputs, name=None):
    node = TransformerFusion(inputs, outputs, name=name)
    return node

# 加载PyTorch模型
model = torch.load('model.pth')

# 转换为ONNX格式
dummy_input = torch.randn(1, 3, 224, 224)
input_names = ['input']
output_names = ['output']
torch.onnx.export(model, dummy_input, 'model.onnx', input_names=input_names, output_names=output_names, opset_version=11)

# 加载ONNX模型
model = onnx.load('model.onnx')

# 替换Transformer的所有子层
for node in model.graph.node:
    if node.op_type == 'MultiHeadAttention':
        # 替换MultiHeadAttention子层
        inputs = []
        for i in range(len(node.input)):
            if i == 0:
                inputs.append(node.input[i])
            else:
                inputs.append('dummy')
        outputs = node.output
        transformer_fusion_node = transformer_fusion(inputs, outputs)
        model.graph.node.remove(node)
        model.graph.node.extend([transformer_fusion_node])
    elif node.op_type == 'LayerNormalization':
        # 替换LayerNormalization子层
        inputs = []
        for i in range(len(node.input)):
            if i == 0:
                inputs.append(node.input[i])
            else:
                inputs.append('dummy')
        outputs = node.output
        transformer_fusion_node = transformer_fusion(inputs, outputs)
        model.graph.node.remove(node)
        model.graph.node.extend([transformer_fusion_node])

# 推断模型形状
onnx.checker.check_model(model)
onnx.shape_inference.infer_shapes(model)

# 导出有自定义op的ONNX模型
onnx.save(model, 'model_fused.onnx')

# 创建TensorRT上下文
def create_context():
    with open('model.plan', 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    context = engine.create_execution_context()
    return engine, context

# 推断函数
def infer(context, inputs):
    inputs = [inp.astype(np.float32) for inp in inputs]
    outputs = [np.empty(output.shape, dtype=np.float32) for output in outputs]
    stream = cuda.Stream()

    bindings = []
    for inp in inputs:
        bindings.append(int(inp.gpudata))
    for out in outputs:
        bindings.append(int(out.gpudata))

    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
    stream.synchronize()

    return [out.get() for out in outputs]

# 加载TensorRT引擎
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
engine, context = create_context()

# 准备输入数据
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
outputs = [np.empty(shape, dtype=np.float32) for shape in engine.get_binding_shape(1)]

# 进行推断
trt_outputs = infer(context, [input_data])

# 验证推断结果
for i, trt_output in enumerate(trt_outputs):
    np.testing.assert_allclose(outputs[i], trt_output, atol=1e-3)

参考六

这是一个比较复杂的问题,需要详细的代码和步骤来回答。以下是一个大体的解决方案:

Step 1. 融合所有层并替换为自定义node

你需要先使用Python和ONNX Runtime执行以下步骤:

  1. 加载训练好的CNN Transformer网络权重参数,并将其转换为ONNX模型。

  2. 将ONNX模型中所有transformer层的节点融合成一个节点。

  3. 将融合后的节点替换为自定义node,并添加相应的属性和输入/输出。

  4. 导出新的ONNX模型。

这里给出一个简单的示例代码,假设模型的输入和输出都是固定的:

import onnx
from onnx import helper, shape_inference, TensorProto
from onnx import numpy_helper

# 加载模型
model_path = 'model.onnx'
model = onnx.load(model_path)

# 获取输入和输出张量的名称和形状
input_name = model.graph.input[0].name
input_shape = model.graph.input[0].type.tensor_type.shape.dim
output_name = model.graph.output[0].name
output_shape = model.graph.output[0].type.tensor_type.shape.dim

# 获取transformer层节点
transformer_node = []
for node in model.graph.node:
    if node.op_type == 'Transformer':
        transformer_node.append(node)

# 融合所有transformer层节点
inputs = [helper.make_tensor_value_info('input', TensorProto.FLOAT, input_shape)]
outputs = [helper.make_tensor_value_info('output', TensorProto.FLOAT, output_shape)]
for node in transformer_node:
    inputs.append(node.input[0])
    outputs.append(node.output[0])
merge_node = helper.make_node(
    'CustomTransformerOp', inputs, outputs, name='Merged_Transformer'
)

# 替换所有transformer层节点为融合节点
new_nodes = []
for node in model.graph.node:
    if node not in transformer_node:
        new_nodes.append(node)
    else:
        new_nodes.append(merge_node)

# 更新输入和输出节点的张量名称和形状
model.graph.input[0].name = 'input'
model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'batch_size'
model.graph.output[0].name = 'output'
model.graph.output[0].type.tensor_type.shape.dim[0].dim_param = 'batch_size'

# 更新ONNX模型
model.graph.node[:] = new_nodes
onnx.checker.check_model(model)
onnx.save(model, 'merged_model.onnx')

Step 2. 加载新的ONNX模型并使用TensorRT API生成plugin

我们需要使用C++代码加载新的ONNX模型,并使用TensorRT API生成plugin。这里需要TensorRT-7.0.0以上版本。

  1. 使用ONNX Parser加载新的ONNX模型。

  2. 声明自定义node的plugin。

  3. 实现自定义node的plugin,并注册到TensorRT。

  4. 构建一个TensorRT engine并运行推理。

以下是一个简单的示例代码,其中假设我们已经定义了CustomTransformerPlugin类和相应的实现:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace nvinfer1;
using namespace nvonnxparser;
using namespace plugin;

// 声明自定义transformer plugin
class CustomTransformerPlugin : public IPluginV2DynamicExt {
  public:
    // 构造函数
    CustomTransformerPlugin(const int hidden_size);

    // 使用weights加载模型参数
    CustomTransformerPlugin(const void* data, size_t length);

    // 返回plugin名称
    const char* getPluginType() const override;

    // 返回plugin版本
    const char* getPluginVersion() const override;

    // 返回plugin能力
    const PluginFieldCollection* getFieldNames() override;

    // 复制plugin
    IPluginV2DynamicExt* clone() const override;

    // 返回plugin输出大小
    DimsExprs getOutputDimensions(
        int outputIndex, const DimsExprs* inputs,
        int nbInputs, IExprBuilder& exprBuilder) override;

    // 设置plugin数据类型
    void setDataType(DataType type) override;

    // 返回plugin数据类型
    DataType getDataType() const override;

    // 返回plugin输出格式
    bool supportsFormatCombination(
        int pos, const PluginTensorDesc* inOut,
        int nbInputs, int nbOutputs) override;

    // 初始化plugin
    void configurePlugin(
        const DynamicPluginTensorDesc* in, int nbInputs,
        const DynamicPluginTensorDesc* out, int nbOutputs) override;

    // 返回plugin输出格式
    size_t getWorkspaceSize(
        const PluginTensorDesc* inputs, int nbInputs,
        const PluginTensorDesc* outputs, int nbOutputs) const override;

    // 运行推理
    int enqueue(
        const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
        const void* const* inputs, void* const* outputs, void* workspace,
        cudaStream_t stream) override;

    // 返回plugin序列化数据大小
    size_t getSerializationSize() const override;

    // 序列化plugin
    void serialize(void* buffer) const override;

    // 清空plugin
    void destroy() override;

  private:
    const int mHiddenSize;  // transformer隐藏层大小
    DataType mDataType;     // plugin数据类型
};

// 实现plugin
CustomTransformerPlugin::CustomTransformerPlugin(const int hidden_size)
    : mHiddenSize(hidden_size), mDataType(DataType::kFLOAT) {}

CustomTransformerPlugin::CustomTransformerPlugin(const void* data, size_t length)
    : mDataType(DataType::kFLOAT) {
    // 从weights中加载模型参数
}

const char* CustomTransformerPlugin::getPluginType() const {
    return "CustomTransformerPlugin";
}

const char* CustomTransformerPlugin::getPluginVersion() const {
    return "1";
}

const PluginFieldCollection* CustomTransformerPlugin::getFieldNames() {
    static PluginFieldCollection fields;
    return &fields;
}

IPluginV2DynamicExt* CustomTransformerPlugin::clone() const {
    return new CustomTransformerPlugin(mHiddenSize);
}

DimsExprs CustomTransformerPlugin::getOutputDimensions(
    int outputIndex, const DimsExprs* inputs, int nbInputs,
    IExprBuilder& exprBuilder) {
    DimsExprs output(inputs[0]);
    output.d[2] = exprBuilder.operation(DimensionOperation::kPROD, *output.d[2], *exprBuilder.constant(mHiddenSize));
    return output;
}

void CustomTransformerPlugin::setDataType(DataType type) {
    mDataType = type;
}

DataType CustomTransformerPlugin::getDataType() const {
    return mDataType;
}

bool CustomTransformerPlugin::supportsFormatCombination(
        int pos, const PluginTensorDesc* inOut,
        int nbInputs, int nbOutputs) {
    if (inOut[pos].format != TensorFormat::kLINEAR) {
        return false;
    }
    return true;
}

void CustomTransformerPlugin::configurePlugin(
        const DynamicPluginTensorDesc* in, int nbInputs,
        const DynamicPluginTensorDesc* out, int nbOutputs) {}

size_t CustomTransformerPlugin::getWorkspaceSize(
        const PluginTensorDesc* inputs, int nbInputs,
        const PluginTensorDesc* outputs, int nbOutputs) const {
    return 0;
}

int CustomTransformerPlugin::enqueue(
        const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
        const void* const* inputs, void* const* outputs, void* workspace,
        cudaStream_t stream) {
    // 实现推理
    return 0;
}

size_t CustomTransformerPlugin::getSerializationSize() const {
    // 返回序列化数据大小
    return 0;
}

void CustomTransformerPlugin::serialize(void* buffer) const {
    // 序列化plugin
}

void CustomTransformerPlugin::destroy() {
    // 清空plugin
}

然后是加载新的ONNX模型和生成plugin的完整示例代码:

int main() {
    // 加载ONNX模型
    const char* model_path = "merged_model.onnx";
    size_t size;
    char* buffer = readBuffer(model_path, size);  // 读取ONNX模型数据
    IRuntime* runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    IPluginFactory* plugin_factory = createPluginFactory(gLogger);
    assert(plugin_factory != nullptr);
    nvonnxparser::IParser* parser = nvonnxparser::createParser(*plugin_factory, gLogger);
    assert(parser != nullptr);
    parser->parse(buffer, size);
    const int batch_size = 1;
    const int hidden_size = 512;
    const int seq_len = 128;
    const std::string input_name = "input";
    const std::string output_name = "output";

    // 注册自定义transformer plugin
    const std::string plugin_name = "CustomTransformerPlugin";
    plugin_factory->registerCreator(
        plugin_name.c_str(), new PluginCreatorImpl<CustomTransformerPlugin>, true);

    // 创建engine
    IBuilder* builder = createInferBuilder(gLogger);
    assert(builder != nullptr);
    builder->setMaxBatchSize(batch_size);
    builder->setMaxWorkspaceSize(1 << 28);
    builder->setFp16Mode(false);
    builder->setInt8Mode(false);
    builder->setStrictTypeConstraints(false);
    INetworkDefinition* network = builder->createNetworkV2(
        1U << static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH));
    IOptimizationProfile* profile = builder->createOptimizationProfile();
    ITensor* input_tensor = network->addInput(
        input_name.c_str(), DataType::kFLOAT, Dims4(batch_size, seq_len, hidden_size));
    ITensor* output_tensor = network->addOutput(
        output_name.c_str(), DataType::kFLOAT, Dims4(batch_size, seq_len, hidden_size));

    // 添加plugin
    const auto plugin_creator = getPluginRegistry()->getPluginCreator(
        plugin_name.c_str(), "1", "");
    const PluginFieldCollection* plugin_fields = plugin_creator->getFieldNames();
    std::vector<PluginField> plugin_params;
    IPluginV2DynamicExt* plugin = plugin_creator->createPlugin(
        "", plugin_fields, plugin_params);
    ITensor* plugin_outputs[] = {
        plugin->enqueue(1, &input_tensor, &output_tensor, nullptr, nullptr)
    };
    assert(plugin_outputs[0] != nullptr);

    // 构建engine
    profile->setDimensions(
        input_name.c_str(), OptProfileSelector::kMIN, Dims4(1, 1, hidden_size));
    profile->setDimensions(
        input_name.c_str(), OptProfileSelector::kOPT, Dims4(batch_size, seq_len, hidden_size));
    profile->setDimensions(
        input_name.c_str(), OptProfileSelector::kMAX, Dims4(batch_size, seq_len, hidden_size));
    profile->setDimensions(
        output_name.c_str(), OptProfileSelector::kMIN, Dims4(1, 1, hidden_size));
    profile->setDimensions(
        output_name.c_str(), OptProfileSelector::kOPT, Dims4(batch_size, seq_len, hidden_size));
    profile->setDimensions(
        output_name.c_str(), OptProfileSelector::kMAX, Dims4(batch_size, seq_len, hidden_size));
    IOptimizationProfile** profiles = new IOptimizationProfile* {profile};
    ICudaEngine* engine = builder->buildEngineWithCustomizedOp(
        *network, *parser, *plugin_factory, *plugin, profiles, 1);
    assert(engine != nullptr);

    // 释放资源
    plugin->destroy();
    input_tensor->destroy();
    output_tensor->destroy();
    network->destroy();
    parser->destroy();
    plugin_factory->destroy();
    builder->destroy();
    runtime->destroy();
    free(buffer);

    return 0;
}

这就是完整的解决方案,需要注意的是,由于自定义node和plugin的实现需要基本的TensorRT知识,这里只是提供了一个简单的示例,具体的实现还需要根据自己的模型和需求进行调整。

参考七

以下是一个用PyTorch实现的简单示例,用于将一个训练好的CNN Transformer模型导出为带有自定义OP的ONNX模型。由于没有提供模型和权重参数,您需要根据您自己的模型和权重参数进行调整。

import torch
import onnx
import onnxruntime as ort
from onnx import helper
from onnx import AttributeProto, TensorProto, GraphProto
import numpy as np

# Load trained model
model = torch.load('model.pt')

# Set up input and output names
input_names = ['input_ids', 'attention_mask']
output_names = ['output']

# Convert PyTorch model to ONNX
dummy_input = (torch.zeros(1, 512), torch.zeros(1, 512))
torch.onnx.export(model=model, args=dummy_input, f='model.onnx', input_names=input_names, output_names=output_names, opset_version=11)

# Load ONNX model
onnx_model = onnx.load('model.onnx')

# Create a custom ONNX node for the fused CNN Transformer model
custom_node = helper.make_node(
    'CustomCNNTransformer',
    inputs=['input_ids', 'attention_mask', 'encoder_layer_0_attention_self_query_weight', 'encoder_layer_0_attention_self_query_bias', ...], # Replace with all necessary input names
    outputs=['output'],
    name='fused_model'
)

# Remove original CNN Transformer nodes
graph = onnx_model.graph
for i in range(len(graph.node)):
    if graph.node[i].op_type == 'EncoderLayer':
        graph.node.pop(i)

# Add custom ONNX node
graph.node.append(custom_node)

# Create ONNX tensor for each weight parameter
encoder_layer_0_attention_self_query_weight_tensor = helper.make_tensor('encoder_layer_0_attention_self_query_weight', TensorProto.FLOAT, [512, 512], np.random.rand(512, 512).flatten().tolist())
encoder_layer_0_attention_self_query_bias_tensor = helper.make_tensor('encoder_layer_0_attention_self_query_bias', TensorProto.FLOAT, [512], np.random.rand(512).flatten().tolist())
...

# Add ONNX tensor to graph initializers
graph.initializer.extend([encoder_layer_0_attention_self_query_weight_tensor, encoder_layer_0_attention_self_query_bias_tensor, ...])

# Export final ONNX model with custom node and weight parameters
onnx.checker.check_model(onnx_model)
onnx.save(onnx_model, 'model_custom.onnx')

# Load ONNX model with custom node and weight parameters using ONNXRuntime
session = ort.InferenceSession('model_custom.onnx')
input_data = {'input_ids': np.zeros((1, 512)), 'attention_mask': np.zeros((1, 512))}
outputs = session.run(None, input_data)

# Implement custom plugin using TensorRT C++ API
# TODO: Implement custom plugin using TensorRT C++ API

此示例涉及以下步骤:

  1. 加载已训练好的CNN Transformer模型。

  2. 使用PyTorch将模型转换为ONNX格式。

  3. 创建自定义ONNX节点用于融合CNN Transformer模型的所有层,并将其添加到ONNX图中。

  4. 移除原始CNN Transformer节点。

  5. 创建ONNX张量以存储融合模型的权重参数,并将它们添加到ONNX图的初始值中。

  6. 导出包括自定义节点和权重参数的ONNX模型。

  7. 使用ONNXRuntime加载带有自定义节点和权重参数的ONNX模型。

  8. 用TensorRT C++ API实现自定义插件。

请注意,此示例仅包括用于将CNN Transformer模型融合为自定义ONNX节点的代码,不包括实现自定义插件的代码。你需要自己编写自定义插件的代码。

你可能感兴趣的:(人工智能,tensorrt推理,深度学习,pytorch,人工智能,python)