∫ 0 π 2 cos n x d x = ∫ 0 π 2 sin n x d x \int_{0}^{\frac{\pi}{2}} \cos^{n}x\mathrm{d}x=\int_{0}^{\frac{\pi}{2}} \sin^{n}x\mathrm{d}x ∫02πcosnxdx=∫02πsinnxdx
x 为偶数: π ( n − 1 ) ! ! 2 n ! ! x为偶数:\frac{\pi(n-1)!!}{2n!!} x为偶数:2n!!π(n−1)!!
x 为奇数: ( n − 1 ) ! ! n ! ! x为奇数:\frac{(n-1)!!}{n!!} x为奇数:n!!(n−1)!!
∫ 0 + ∞ e − x 2 d x = π 2 \int_{0}^{+\infty} e^{-x^2}\mathrm{d}x=\frac{\sqrt\pi}{2} ∫0+∞e−x2dx=2π
基本的不讲了,讲讲换元
先是二重积分的
∫ ∫ D f ( x , y ) d x d y = ∫ ∫ D ′ f ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ d u d v {\int\int}_{D} f(x,y)\mathrm{d}x\mathrm{d}y={\int\int}_{D'}f(x(u,v),y(u,v))|J|\mathrm{d}u\mathrm{d}v ∫∫Df(x,y)dxdy=∫∫D′f(x(u,v),y(u,v))∣J∣dudv
其中
J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ J=\frac{\partial(x,y)}{\partial(u,v)} =\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{vmatrix} J=∂(u,v)∂(x,y)= ∂u∂x∂u∂y∂v∂x∂v∂y
特别地,做代换 { x = r cos θ y = r sin θ \left\{\begin{array}{cc} x=r\cos\theta\\y=r\sin\theta \end{array}\right. {x=rcosθy=rsinθ得到
∫ ∫ D f ( x , y ) d σ = ∫ ∫ D ′ f ( r cos θ , r sin θ ) r d r d θ {\int\int}_{D} f(x,y)\mathrm{d}\sigma={\int\int}_{D'}f(r\cos\theta,r\sin\theta)r\mathrm{d}r\mathrm{d}\theta ∫∫Df(x,y)dσ=∫∫D′f(rcosθ,rsinθ)rdrdθ
先是二重积分的
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) ∣ J ∣ d u d v d w {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(x(u,v,w),y(u,v,w),z(u,v,w))|J|\mathrm{d}u\mathrm{d}v\mathrm{d}w ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ω′f(x(u,v,w),y(u,v,w),z(u,v,w))∣J∣dudvdw
其中
J = ∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ J=\frac{\partial(x,y,z)}{\partial(u,v,w)} =\begin{vmatrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}&\frac{\partial x}{\partial w}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\\frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w} \end{vmatrix} J=∂(u,v,w)∂(x,y,z)= ∂u∂x∂u∂y∂u∂z∂v∂x∂v∂y∂v∂z∂w∂x∂w∂y∂w∂z
特别地,做代换 { x = r cos θ y = r sin θ z = z \left\{\begin{array}{cc} x=r\cos\theta\\y=r\sin\theta\\z=z \end{array}\right. ⎩ ⎨ ⎧x=rcosθy=rsinθz=z得到
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( r cos θ , r sin θ , z ) r d r d θ d z {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(r\cos\theta,r\sin\theta,z)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ω′f(rcosθ,rsinθ,z)rdrdθdz
又或者做代换 { x = ρ sin ϕ cos θ , 0 ≤ ρ < + ∞ y = ρ sin ϕ sin θ , 0 ≤ ϕ ≤ π z = z cos ϕ , 0 ≤ θ < 2 π \left\{\begin{array}{cc} x=\rho\sin\phi\cos\theta,&0\le\rho<+\infty\\ y=\rho\sin\phi\sin\theta,&0\le\phi\le\pi\\ z=z\cos\phi,&0\le\theta<2\pi \end{array}\right. ⎩ ⎨ ⎧x=ρsinϕcosθ,y=ρsinϕsinθ,z=zcosϕ,0≤ρ<+∞0≤ϕ≤π0≤θ<2π
值得注意的是 θ \theta θ是 x x x和 y y y轴的夹角, ϕ \phi ϕ是 z z z和 O x y Oxy Oxy平面的夹角
得到
∫ ∫ ∫ Ω f ( x , y , z ) d x d y d z = ∫ ∫ ∫ Ω ′ f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , z cos ϕ ) ρ 2 sin ϕ d ρ d θ d ϕ {\int\int\int}_{\Omega} f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z={\int\int\int}_{\Omega'}f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,z\cos\phi)\rho^2\sin\phi\mathrm{d}\rho\mathrm{d}\theta\mathrm{d}\phi ∫∫∫Ωf(x,y,z)dxdydz=∫∫∫Ω′f(ρsinϕcosθ,ρsinϕsinθ,zcosϕ)ρ2sinϕdρdθdϕ
另外,要注意利用奇函数和偶函数的性质,可以极大的简化计算
例如对于 z = f ( x , y ) z=f(x,y) z=f(x,y)
S = ∫ ∫ D 1 + f x 2 ( x , y ) + f y 2 ( x , y ) d x d y S={\int\int}_D\sqrt{1+f_x^2(x,y)+f_y^2(x,y)}\mathrm{d}x\mathrm{d}y S=∫∫D1+fx2(x,y)+fy2(x,y)dxdy
再如对于参数方程 { x = x ( u , v ) y = y ( u , v ) , ( u , v ) ∈ D ′ z = z ( u , v ) \left\{\begin{array}{cc} x=x(u,v)\\ y=y(u,v),&(u,v)\in D'\\ z=z(u,v) \end{array}\right. ⎩ ⎨ ⎧x=x(u,v)y=y(u,v),z=z(u,v)(u,v)∈D′
则设 { E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \left\{\begin{array}{cc} E=x_u^2+y_u^2+z_u^2\\ F=x_ux_v+y_uy_v+z_uz_v\\ G=x_v^2+y_v^2+z_v^2 \end{array}\right. ⎩ ⎨ ⎧E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2
那么
S = ∫ ∫ D ′ E G − F 2 d u d v S={\int\int}_{D'}\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v S=∫∫D′EG−F2dudv
设质量密度是 ρ ( x , y , z ) \rho(x,y,z) ρ(x,y,z)
则
J z = ∫ ∫ ∫ Ω ( x 2 + y 2 ) ρ ( x , y , z ) d V J x = ∫ ∫ ∫ Ω ( z 2 + y 2 ) ρ ( x , y , z ) d V J y = ∫ ∫ ∫ Ω ( x 2 + z 2 ) ρ ( x , y , z ) d V J x y = ∫ ∫ ∫ Ω z 2 ρ ( x , y , z ) d V J y z = ∫ ∫ ∫ Ω x 2 ρ ( x , y , z ) d V J z x = ∫ ∫ ∫ Ω y 2 ρ ( x , y , z ) d V J_z={\int\int\int}_\Omega(x^2+y^2)\rho(x,y,z)\mathrm{d}V\\ J_x={\int\int\int}_\Omega(z^2+y^2)\rho(x,y,z)\mathrm{d}V\\ J_y={\int\int\int}_\Omega(x^2+z^2)\rho(x,y,z)\mathrm{d}V\\ J_{xy}={\int\int\int}_\Omega z^2\rho(x,y,z)\mathrm{d}V\\ J_{yz}={\int\int\int}_\Omega x^2\rho(x,y,z)\mathrm{d}V\\ J_{zx}={\int\int\int}_\Omega y^2\rho(x,y,z)\mathrm{d}V Jz=∫∫∫Ω(x2+y2)ρ(x,y,z)dVJx=∫∫∫Ω(z2+y2)ρ(x,y,z)dVJy=∫∫∫Ω(x2+z2)ρ(x,y,z)dVJxy=∫∫∫Ωz2ρ(x,y,z)dVJyz=∫∫∫Ωx2ρ(x,y,z)dVJzx=∫∫∫Ωy2ρ(x,y,z)dV
假设曲线是 y = y ( x ) y=y(x) y=y(x)在 [ a , b ] [a,b] [a,b]上积分
∫ L f ( x , y ) d s = ∫ a b f ( x , y ( x ) ) 1 + [ y ′ ( x ) ] 2 d x \int_Lf(x,y)\mathrm{d}s=\int_a^bf(x,y(x))\sqrt{1+[y'(x)]^2}\mathrm{d}x ∫Lf(x,y)ds=∫abf(x,y(x))1+[y′(x)]2dx
若是参数方程形式 L : { x = ϕ ( t ) y = ψ ( t ) L:\left\{\begin{array}{cc} x=\phi(t)\\ y=\psi(t) \end{array}\right. L:{x=ϕ(t)y=ψ(t)
其中 t ∈ [ α , β ] t\in[\alpha,\beta] t∈[α,β]
则
∫ L f ( x , y ) d s = ∫ α β f ( ϕ ( t ) , ψ ( t ) ) [ ϕ ′ ( t ) ] 2 + [ ψ ′ ( t ) ] 2 d t \int_Lf(x,y)\mathrm{d}s=\int_\alpha^\beta f(\phi(t),\psi(t))\sqrt{[\phi'(t)]^2+[\psi'(t)]^2}\mathrm{d}t ∫Lf(x,y)ds=∫αβf(ϕ(t),ψ(t))[ϕ′(t)]2+[ψ′(t)]2dt
三维的曲线积分同理,类比可得
也叫路径积分
对于 L : { x = ϕ ( t ) y = ψ ( t ) L:\left\{\begin{array}{cc} x=\phi(t)\\ y=\psi(t) \end{array}\right. L:{x=ϕ(t)y=ψ(t)
其中 t ∈ [ α , β ] t\in[\alpha,\beta] t∈[α,β],表示曲线 A B AB AB
则 ∫ A B P ( x , y ) d x + Q ( x , y ) d y = ∫ α β [ P ( ϕ ( t ) , ψ ( t ) ) ϕ ′ ( t ) + Q ( ϕ ( t ) , ψ ( t ) ) ψ ′ ( t ) ] d t \int_{AB}P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y=\int_\alpha^\beta [P(\phi(t),\psi(t))\phi'(t)+Q(\phi(t),\psi(t))\psi'(t)]\mathrm{d}t ∫ABP(x,y)dx+Q(x,y)dy=∫αβ[P(ϕ(t),ψ(t))ϕ′(t)+Q(ϕ(t),ψ(t))ψ′(t)]dt
而第二型曲线积分与路径无关的条件是当
∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} ∂y∂P=∂x∂Q
另外,若存在 d u ( x , y ) = P d x + Q d y \mathrm{d}u(x,y)=P\mathrm{d}x+Q\mathrm{d}y du(x,y)=Pdx+Qdy,则可以直接将曲线头尾带入 u ( x , y ) u(x,y) u(x,y)中得到答案
设 L L L是封闭曲线且为正向曲线(逆时针)
∫ L P d x + Q d y = ∫ ∫ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_L P\mathrm{d}x+Q\mathrm{d}y={\int\int}_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\mathrm{d}x\mathrm{d}y ∫LPdx+Qdy=∫∫D(∂x∂Q−∂y∂P)dxdy
∫ A B P d x + Q d y = ∫ A B ( P cos α + Q cos β ) d s \int_{AB}P\mathrm{d}x+Q\mathrm{d}y= \int_{AB}(P\cos\alpha+Q\cos\beta)\mathrm{d}s ∫ABPdx+Qdy=∫AB(Pcosα+Qcosβ)ds
其中 ( cos α , cos β ) (\cos\alpha,\cos\beta) (cosα,cosβ)是曲线 A B AB AB的方向向量
值得注意的是,第一型曲线积分的上下界对调,得到的值是原来的相反数,而第二型曲线积分的值不受上下界对调的影响
假设曲线是 z = g ( x , y ) z=g(x,y) z=g(x,y)在 D D D(投影)上积分
∫ ∫ S f ( x , y , z ) d S = ∫ ∫ S f ( x , y , g ( x , y ) ) 1 + g x 2 + g y 2 d σ {\int\int}_Sf(x,y,z)\mathrm{d}S={\int\int}_Sf(x,y,g(x,y))\sqrt{1+g_x^2+g_y^2}\mathrm{d}\sigma ∫∫Sf(x,y,z)dS=∫∫Sf(x,y,g(x,y))1+gx2+gy2dσ
若是参数方程形式 { x = x ( u , v ) y = y ( u , v ) , ( u , v ) ∈ D z = z ( u , v ) \left\{\begin{array}{cc} x=x(u,v)\\ y=y(u,v),&(u,v)\in D\\ z=z(u,v) \end{array}\right. ⎩ ⎨ ⎧x=x(u,v)y=y(u,v),z=z(u,v)(u,v)∈D
则设 { E = x u 2 + y u 2 + z u 2 F = x u x v + y u y v + z u z v G = x v 2 + y v 2 + z v 2 \left\{\begin{array}{cc} E=x_u^2+y_u^2+z_u^2\\ F=x_ux_v+y_uy_v+z_uz_v\\ G=x_v^2+y_v^2+z_v^2 \end{array}\right. ⎩ ⎨ ⎧E=xu2+yu2+zu2F=xuxv+yuyv+zuzvG=xv2+yv2+zv2
那么和上面提到的面积分一样(或者说上面的曲面积分是 f ( x , y , z ) = 1 f(x,y,z)=1 f(x,y,z)=1的特殊形式)
∫ ∫ S f ( x , y , z ) d S = ∫ ∫ D f ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) E G − F 2 d u d v {\int\int}_Sf(x,y,z)\mathrm{d}S={\int\int}_{D}f(x(u,v),y(u,v),z(u,v))\sqrt{EG-F^2}\mathrm{d}u\mathrm{d}v ∫∫Sf(x,y,z)dS=∫∫Df(x(u,v),y(u,v),z(u,v))EG−F2dudv