- Github2025-03-10 开源项目周报 Top13
老孙正经胡说
开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本周(2025-03-10统计)共有13个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目7TypeScript项目2JavaScript项目2C++项目1JupyterNotebook项目1Vue项目1文档项目1Rust项目1Svelte项目1从零开始构建你喜爱的技术创建周期:2156天Star数量:253338个For
- 利用github部署项目
浪裡遊
github前端持续部署
挂载GitHubPages的方法基本步骤创建仓库:在GitHub上创建一个新的仓库。如果使用自定义域名,则仓库名应为.github.io;否则可以是任意名称。启用GitHubPages:进入仓库的设置页面,在“Pages”部分选择要发布的分支(通常是main或master),然后保存更改。上传网站内容:将你的HTML、CSS、JavaScript等文件上传到仓库中指定的分支。什么是SSHSSH是一
- C# 建造者模式(Builder Pattern)详细讲解
江沉晚呤时
设计模式C#java数据库开发语言.netcorec#netjavascript
一、什么是建造者模式?建造者模式(BuilderPattern)是一种创建型设计模式,它通过将一个复杂对象的构建过程与其表示分离,使得同样的构建过程可以创建不同的表示。这个模式主要应用于那些构建过程复杂且涉及多个步骤的场景,特别适合于需要灵活配置且逐步构建的对象。1.1.设计模式分类设计模式(DesignPatterns)分为三大类:创建型模式(CreationalPatterns):关注如何创建
- python-git- GitHub
45度看我
github
python之git-GitHub一:github原文链接二:WhatisGitHub1>创建仓库2>创建分支3>提交修改4>发起PullRequest三:理解GitHub流四:创建你的GitHub主页1>setting-->“Commitchanges”按钮五:典型的项目1>社区(TheCommunity)2>文档(TheDocs)3>Issue创建一个问题单4>PullRequest六:Git
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- 上传本地项目到GitHub
shi_jiaye
笔记github
一、在GitHub上创建仓库1.点击右上角头像–>点击Yourrepositories2.点击New3.创建仓库网址复制一下,在后面git上传时会用到二、打开GitBash1.cd进入项目所在路径2.输入gitinit在当前项目的目录中生成本地的git管理(当前目录下出现.git文件夹)3.输入gitadd.将项目上的文件添加到仓库中注意add后面有个空格,后面还有个点4.输入gitcommit-
- 每日一题之地宫取宝
Ace'
算法数据结构
题目描述X国王有一个地宫宝库。是n×m个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少
- github 上拉取,修改,增加分支及提交
AI_央木
githubgit
1.github中ssh配置1.1gitconfig--globaluser.name“你的名字”gitconfig--globaluser.email“你的邮箱”1.2生成id_rsa.pubssh-keygen-trsa-C"姓名/邮箱"1.3ssh配置将生成的id_rsa.pub中的内容拷贝到key中2.拉取项目gitclonegit@xxxx3.本地创建新分支gitcheckout-bxx
- 【技术解密】本地部署 DeepSeek-V3:完整指南
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能深度学习DeepSeek
目录引言运行环境需求下载与安装推理部署总结参考资源引言随着人工智能的快速发展,开源大模型正逐步改变着技术生态。DeepSeek-V3作为最新的开源大模型之一,不仅提供了强大的推理能力,同时也支持本地部署,使开发者可以灵活地进行自定义优化。本文将详细介绍如何在本地部署DeepSeek-V3,涵盖系统要求、安装步骤、模型转换及不同推理框架的应用。1.运行环境需求1.1硬件要求✅NVIDIAGPU(支持
- 【DeepSeek应用】本地部署deepseek模型后,如何在vscode中调用该模型进行代码撰写,检视和优化?
AndrewHZ
深度学习新浪潮AI算法工程师面试指北vscode人工智能深度学习DeepSeek算法语言模型编辑器
若已成功在本地部署了DeepSeek模型(例如通过vscode-llm、ollama或私有API服务),在VSCode中调用本地模型进行代码撰写、检视和优化的完整流程如下:1.准备工作:确认本地模型服务状态模型服务类型:若使用HTTPAPI服务(如FastAPI/Flask封装),假设服务地址为http://localhost:8000。若使用ollama部署,模型名称为deepseek,调用命令
- 小米音频理解技术重大突破:7B模型借助DeepSeek-R1算法引领行业新篇章
耶耶Norsea
网络杂烩人工智能深度学习
摘要小米公司通过采用DeepSeek-R1算法的迁移技术,在音频理解领域实现了重大突破。其7B模型在MMAU音频评测基准中表现出色,成功登顶排行榜。MMAU评测基准包含10000条音频样本,涵盖语音、环境声和音乐等多种类型,难度极高。即便如此,该模型的表现已超越人类专家的82.2%识别准确率,展现出卓越的音频理解能力。关键词小米音频突破,DeepSeek-R1算法,7B模型进展,MMAU评测基准,
- 异步加载回调问题,多个资源异步加载,让其全部加载完回调
QO_GQ
lua开发语言
刚刚遇到一个bug,场景大图需要提前加载,所有场景组件就需要等图加载好后再处理,但是由于场景背景图是异步加载的,并且是同时for循环进行异步加载的,所以无法确认哪一个图是最后加载出来的,抱着试一试的心态,这样写了一下,发现没用:---记载所有背景图functionLoadBgRawImage(mapID,func)fori=1,lendo...localpath="xxx\xxx\xxx.jpg"
- 生成式AI+安全:API防护的“进化革命”——从被动防御到智能对抗的技术跃迁
数信云 DCloud
人工智能安全ai
在生成式AI重塑数字世界的今天,API作为数据流动的“数字血管”,其安全性已成为企业生死存亡的关键。行业数据显示,2025年全球77%的企业将深度整合生成式AI技术,承载着75%互联网流量的API体系,正驱动着超2000亿美元的数字经济浪潮。然而,这场技术革命也催生了新型威胁:攻击者利用生成式AI自动化构造恶意请求,绕过传统规则引擎;大模型API的滥用导致算力耗尽与数据泄露;甚至AI生成的代码漏洞
- HarmonyOS实战开发:@ohos.arkui.UIContext (UIContext)
蜀道衫QAQ
鸿蒙harmonyos华为鸿蒙系统android鸿蒙
在Stage模型中,WindowStage/Window可以通过loadContent接口加载页面并创建UI的实例,并将页面内容渲染到关联的窗口中,所以UI实例和窗口是一一关联的。一些全局的UI接口是和具体UI实例的执行上下文相关的,在当前接口调用时,通过追溯调用链跟踪到UI的上下文,来确定具体的UI实例。若在非UI页面中或者一些异步回调中调用这类接口,可能无法跟踪到当前UI的上下文,导致接口执行
- 证券交易系统核心技术解析:LinkTrader 的毫秒级响应架构与风控实践
Ashlee_code
架构pythonjavac++
一、行业痛点:为什么传统交易系统正在被淘汰?2024年,证券行业guweng22346的技术竞争已从“功能完备”转向**“速度+智能”的极限博弈**。以下是传统系统的三大致命缺陷:数据延迟:非官方行情源导致套利窗口丢失(实测延迟普遍>0.1秒);风控低效:依赖人工监控,凌晨时段风险拦截率不足30%;扩展性差:单体架构下订单处理峰值低于10万/秒,极易崩溃。典型案例:某券商因系统延迟0.05秒,单日
- 如何在 GitHub 上修改他人的分支
vortex5
教程github
在GitHub上修改他人的分支是一个常见的协作需求,但具体操作取决于你是否拥有目标仓库的直接推送权限。如果你是项目的协作者,可以直接修改分支;如果没有权限,则需要通过Fork和PullRequest(PR)的方式贡献代码。本文将详细介绍这两种情况的操作步骤,涵盖从克隆仓库到提交变更的完整流程,并提供实用建议,确保你的协作过程顺畅高效。一、直接修改他人分支(需要协作者权限)如果你被添加为目标仓库的协
- 缓存:节省使用大模型的成本
雪碧没气阿
spring人工智能机器人自然语言处理AI大模型缓存
稍有经验的程序员对缓存都不陌生,在任何一个正式的工程项目上都少不了缓存的身影。硬件里面有缓存,软件里面也有缓存,缓存已经成了程序员的必修课。我们为什么要使用缓存呢?主要就是为了减少访问低速服务的次数,提高访问速度。大模型显然就是一个低速服务,甚至比普通的服务还要慢。为了改善大模型的使用体验,人们已经做出了一些努力,比如采用流式响应,提升第一个字出现在用户面前的速度。缓存,显然是另外一个可以解决大模
- 【大模型实战篇】使用GPTQ量化QwQ-32B微调后的推理模型
源泉的小广场
大模型大模型量化推理模型量化量化qwq32bgptq量化大模型推理性能调优
1.量化背景之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微
- 从零开始学习鸿蒙系统
Ning.L
华为harmonyos
1.移动通讯技术的发展-1G时代:1980年摩托罗拉开发出了第一部手机,使用的就是1G的技术。只能进行语音通话。就是大哥大。-2G时代:1996年到1997年出现了第二代GSM、CDMA等数字制式手机,增加了接收数据的功能。2G不仅可以通话,还可以数据收发的功能,最开始的速度只有9K/S。如果我想收发一些图片或者音频技术是不可能的,因为速度太慢了。后来随着互联网多媒体的流行,多了图片,视频等,所以
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- Github开源库Xpopup代码阅读
月亮下的小草屋
github开源库代码阅读android
前言很久没写点东西了,在家闲着考了个驾照,花了一个半月,中国的驾考真的是没眼看,刚拿到驾照当天就被疫情封闭在家,直接封了一个多月,人都麻了,再来一次估计直接过年了,最近刚开始干点活。Xpopup是我非常喜欢的一个Github开源库,一直在用,我在Xpopup2.x版本的时候看过一遍它的代码,现在已经更新到3.x版本了,这两天也没啥事,又重新看了一遍,Xpopup的代码还是很容易阅读的,有兴趣的话可
- Linux如何查询文件及文件夹大小
大数据侠客
操作系统相关linux
查看当前目录下各文件、文件夹的大小,这个比较实用du-h-max-depth=1*查询当前目录总大小du-sh3.最大文件夹倒叙和正序du-s*|sort-rn从小到大按字节排序du-sh*sort-n从小到大按字节和M排序4.最大文件夹倒排前10和后10du-sh*|sort-rn|head前面10个du-sh*|sort-rn|tail后面10个
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 基础架构系列篇-系统WIN10使用VS+CMAKE编译AWS-SDK-CPP
dong-123456
架构运维知识点aws云计算c++vscmake
基础架构系列篇-系统WIN10使用VS+CMAKE编译AWS-SDK-CPP目录1.下载GIT(https://git-scm.com/downloads),本地安装2.下载CMAKE(https://cmake.org/download/),这里用的版本3.17,本地安装3.下载VS19版本,安装4.下载AWS-SDK-1.8地址https://github.com/aws/aws-sdk-cp
- AI如何创作音乐及其案例
alankuo
人工智能
AI创作音乐主要有以下几种方式:基于深度学习的生成模型深度神经网络:通过大量的音乐数据训练,让AI学习音乐的结构、旋律、和声、节奏等特征。如Transformer架构,其注意力机制可捕捉跨小节的旋律关联性,能生成具有长期依赖性的音乐序列。生成对抗网络(GAN):包含生成器和判别器,生成器负责生成音乐样本,判别器判断生成的音乐是否真实。两者相互对抗、不断优化,使生成器生成更逼真的音乐。变分自编码器(
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p