source: http://acm.hdu.edu.cn/showproblem.php?pid=3872
title: Dragon Ball
解法:线段树
这题的题解不太好写。需要利用的一个特点是:
设当前扫描到点i,vMax[u]表示[u, i]之间的能量的最大值,则vMax具有
不增性。
#include <iostream> #include <stdio.h> using namespace std; typedef long long ll; const int N = 100005; const ll INF = 0X7FFFFFFFFFFFFFFFLL; struct seg{ int l, r; int dv; ll best; int mid(){ return (l + r) >> 1; } }segs[N<<2]; int v[N]; int last[N], r[N], vMax[N]; int n; template <typename T> void getNum(T& a){ a = 0; char ch; while(true){ ch = getchar(); if(ch >= '0' && ch <= '9') break; } a = ch - '0'; while(true){ ch = getchar(); if(ch < '0' || ch > '9') break; a = a * 10 + ch - '0'; } } inline int ls(int id){ return (id << 1) + 1; } inline int rs(int id){ return (id << 1) + 2; } void build(int id, int l, int r){ segs[id].l = l; segs[id].r = r; segs[id].dv = 0; segs[id].best = INF; if(l < r){ int mid = segs[id].mid(); build(ls(id), l, mid); build(rs(id), mid+1, r); } } bool input(){ getNum(n); int i, tMax, t; tMax = 0; for(i = 1; i <= n; i++){ getNum(t); if(t > tMax){ do{ last[++tMax] = -1; }while(tMax < t); } if(last[t] == -1){ r[i] = 1; last[t] = i; }else{ r[i] = last[t] + 1; last[t] = i; } } for(i = 1; i <= n; i++){ getNum(v[i]); } return true; } inline void up(int id, int dv){ segs[id].best += dv; segs[id].dv += dv; } void down(int id){ if(segs[id].dv != 0){ up(ls(id), segs[id].dv); up(rs(id), segs[id].dv); segs[id].dv = 0; } } void update(int id){ segs[id].best = INF; if(segs[id].best > segs[ls(id)].best){ segs[id].best = segs[ls(id)].best; } if(segs[id].best > segs[rs(id)].best){ segs[id].best = segs[rs(id)].best; } } void ins(int id, int pos, ll v){ if(segs[id].l == segs[id].r){ segs[id].best = v; return ; } down(id); if(pos <= segs[id].mid()){ ins(ls(id), pos, v); }else{ ins(rs(id), pos, v); } update(id); } void ins(int id, int l, int r, ll dv){ if(l <= segs[id].l && segs[id].r <= r){ up(id, dv); return; } if(segs[id].l == segs[id].r) return; down(id); int mid = segs[id].mid(); if(l <= mid){ ins(ls(id), l, r, dv); } if(r > mid){ ins(rs(id), l, r, dv); } update(id); } ll qry(int id, int l, int r){ if(l <= segs[id].l && segs[id].r <= r){ return segs[id].best; } if(segs[id].l == segs[id].r) return INF; down(id); int mid = segs[id].mid(); ll ans = INF; if(l <= mid){ ans = min(ans, qry(ls(id), l, r)); } if(r > mid){ ans = min(ans, qry(rs(id), l, r)); } update(id); return ans; } void solve(){ build(0, 1, n); int i, u; ll lv; lv = 0; for(i = 1; i <= n; i++){ ins(0, i, lv + v[i]); last[i] = i; vMax[i] = v[i]; for(u = i; u >= 1 && vMax[u] <= v[i]; ){ if(vMax[u] != v[i]){ ins(0, last[u], u, v[i] - vMax[u]); } last[i] = last[u]; u = last[u] - 1; } lv = qry(0, r[i], i); } printf("%I64d\n", lv); } int main() { int t; getNum(t); while(t--){ input(); solve(); } return 0; }