手把手教你在昇腾平台上搭建PyTorch训练环境

PyTorch是业界流行的深度学习框架,用于开发深度学习训练脚本,默认运行在CPU/GPU上。在昇腾AI处理器上运行PyTorch业务时,需要搭建异构计算架构CANN(Compute Architecture for Neural Networks)软件开发环境,并安装PyTorch 框架,从而实现训练脚本的迁移、开发和调试。

手把手教你在昇腾平台上搭建PyTorch训练环境_第1张图片

下面带大家了解如何在昇腾平台上快速安装驱动固件、CANN软件及PyTorch框架。

环境检查

在昇腾平台上安装驱动和固件前,首先需要检查安装环境的NPU是否正常在位,并确认操作系统版本与内核版本是否满足对应的版本配套要求。

以Atlas 800 训练服务器(型号:9010)(昇腾AI处理器型号Ascend 910)为例,检查NPU是否正常在位可执行lspci | grep d801命令,如果服务器上有 N路NPU,回显N行含“d801”字段,则表示NPU正常在位。

安装驱动和固件

1. 创建驱动运行用户HwHiAiUser。

groupadd -g 1000 HwHiAiUser     
useradd -g HwHiAiUser -u 1000 -d /home/HwHiAiUser -m HwHiAiUser -s /bin/bash

2. 安装驱动和固件。

在昇腾社区的“固件与驱动”下载页面下载配套产品的固件驱动软件,并上传到服务器任意目录,然后参考如下命令进行固件驱动软件包的安装,需要注意,需要以root用户进行安装。

a.为软件包增加可执行权限。

chmod +x Ascend-hdk-910-npu-driver_23.0.rc1_linux-x86-64.run
chmod +x Ascend-hdk-910-npu-firmware_6.3.0.1.241.run

b.安装驱动。

./Ascend-hdk-910-npu-driver_23.0.rc1_linux-x86-64.run --full --install-for-all

默认安装路径为“/usr/local/Ascend”,出现类似如下回显信息,说明安装成功。

Driver package installed successfully!

您还可以通过执行npu-smi info命令查看,出现类似如下信息,说明驱动加载成功。

手把手教你在昇腾平台上搭建PyTorch训练环境_第2张图片

c.安装固件。

./Ascend-hdk-910-npu-firmware_6.3.0.1.241.run --full

出现类型如下回显信息,说明安装成功。

Firmware package installed successfully! Reboot now or after driver installation for the installation/upgrade to take effect

3. 驱动固件安装完成后,重启系统。

reboot

安装CANN软件依赖

CANN软件安装过程需要下载相关依赖,请确保安装环境能够连接网络,并已配置软件源,以下步骤以root用户操作为例。

1. 安装第三方依赖

Ubuntu系统(Debian、UOS20、Linux等系统操作一致):

apt-get install -y gcc g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools libblas-dev gfortran libblas3

openEuler系统(EulerOS、CentOS、BCLinux等系统操作一致):

yum install -y gcc gcc-c++ make cmake unzip zlib-devel libffi-devel openssl-devel pciutils net-tools sqlite-devel lapack-devel gcc-gfortran

2. 安装Python及其依赖

以安装Python 3.7.5为例。

1)通过wget命令下载python3.7.5源码包。

wget https://www.python.org/ftp/python/3.7.5/Python-3.7.5.tgz

2)解压缩源码包

tar -zxvf Python-3.7.5.tgz

3)源码编译安装Python。

​cd Python-3.7.5
./configure --prefix=/usr/local/python3.7.5 --enable-loadable-sqlite-extensions --enable-shared
make
make install

以--prefix=/usr/local/python3.7.5路径为例进行说明。执行配置、编译和安装命令后,安装包在/usr/local/python3.7.5路径。

4)设置python3.7.5环境变量。

#用于设置python3.7.5库文件路径
export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:$LD_LIBRARY_PATH
#如果用户环境存在多个python3版本,则指定使用python3.7.5版本
export PATH=/usr/local/python3.7.5/bin:$PATH

5)检查是否安装成功。

​python3 --version
pip3 --version

返回相关版本信息,则说明安装成功。

6)安装pip依赖。

pip3 install attrs numpy decorator sympy cffi pyyaml pathlib2 psutil protobuf scipy requests absl-py

安装CANN开发套件包

1. 从昇腾社区“CANN”产品页,根据操作系统架构下载CANN开发套件包。

例如“Ascend-cann-toolkit_6.3.RC1_linux-x86_64.run”,并将其上传到安装环境任意目录。

2. 安装CANN开发套件包。

# 添加可执行权限
chmod +x Ascend-cann-toolkit_6.3.RC1_linux-x86_64.run
# 校验软件包的一致性和完整性
./Ascend-cann-toolkit_6.3.RC1_linux-x86_64.run --check
# 执行安装命令
./Ascend-cann-toolkit_6.3.RC1_linux-x86_64.run --install --install-for-all

安装完成后,若显示如下信息,则说明软件安装成功:

[INFO] xxx install success

xxx表示安装的实际软件包名。

安装PyTorch

CANN软件包安装完成后,就可以进行PyTorch的安装了。开发者可以选择PyTorch 1.8.1或PyTorch 1.11.0版本,PyTorch安装成功后再安装APEX混合精度模块。在安装Pytorch前,需要先安装以下依赖。

pip3 install wheel
pip3 install typing_extensions

安装PyTorch 1.8.1

1)安装官方torch包。

x86_64架构

wget https://download.pytorch.org/whl/cpu/torch-1.8.1%2Bcpu-cp37-cp37m-linux_x86_64.whl
pip3 install torch-1.8.1+cpu-cp37-cp37m-linux_x86_64.whl

aarch64架构

wget https://repo.huaweicloud.com/kunpeng/archive/Ascend/PyTorch/torch-1.8.1-cp37-cp37m-linux_aarch64.whl
pip3 install torch-1.8.1-cp37-cp37m-linux_aarch64.whl

2)安装昇腾提供的PyTorch适配插件torch_npu。

x86_64架构

wget https://gitee.com/ascend/pytorch/releases/download/v5.0.rc1-pytorch1.8.1/torch_npu-1.8.1.post1-cp37-cp37m-linux_ x86_64.whl
pip3 install torch_npu-1.8.1.post1-cp37-cp37m-linux_ x86_64.whl

aarch64架构

​wget https://gitee.com/ascend/pytorch/releases/download/v5.0.rc1-pytorch1.8.1/torch_npu-1.8.1.post1-cp37-cp37m-linux_aarch64.whl
pip3 install torch_npu-1.8.1.post1-cp37-cp37m-linux_aarch64.whl

 此处以5.0.rc1版本为例,实际请选择CANN配套的PyTorch插件版本进行安装。

3)安装对应框架版本的torchvision。

pip3 install torchvision==0.9.1

4)验证是否安装成功。

python -c "import torch;import torch_npu; a = torch.ones(3, 4).npu(); print(a + a);"

如果输出包含如下关键信息则说明PyTorch安装成功。

 [[2., 2., 2., 2.],
  [2., 2., 2., 2.],
  [2., 2., 2., 2.]]

安装PyTorch 1.11.0

1)安装官方torch包。

x86_64架构

wget https://download.pytorch.org/whl/cpu/torch-1.11.0%2Bcpu-cp37-cp37m-linux_x86_64.whl
pip3 install torch-1.11.0+cpu-cp37-cp37m-linux_x86_64.whl

aarch64架构

wget https://repo.huaweicloud.com/kunpeng/archive/Ascend/PyTorch/torch-1.11.0-cp37-cp37m-linux_aarch64.whl
pip3 install torch-1.11.0-cp37-cp37m-linux_aarch64.whl

2)安装昇腾提供的PyTorch适配插件torch_npu。

x86_64架构

wget https://gitee.com/ascend/pytorch/releases/download/v5.0.rc1-pytorch1.11.0/torch_npu-1.11.0-cp37-cp37m-linux_ x86_64.whl
pip3 install torch_npu-1.11.0-cp37-cp37m-linux_ x86_64.whl

aarch64架构

wget https://gitee.com/ascend/pytorch/releases/download/v5.0.rc1-pytorch1.11.0/torch_npu-1.11.0-cp37-cp37m-linux_aarch64.whl
pip3 install torch_npu-1.11.0-cp37-cp37m-linux_aarch64.whl

3)安装对应框架版本的torchvision。

pip3 install torchvision==0.12.0

4)验证PyTorch是否安装成功。

python -c "import torch;import torch_npu; a = torch.ones(3, 4).npu(); print(a + a);"

如果输出包含如下关键信息则说明PyTorch安装成功。

 [[2., 2., 2., 2.],
  [2., 2., 2., 2.],
  [2., 2., 2., 2.]]

安装APEX混合精度模块

APEX混合精度模块是一个集优化性能、精度收敛于一身的综合优化库,可以提供不同场景下的混合精度训练支持。

1. 安装依赖,以CentOS与Ubuntu操作系统为例。

#Ubuntu
apt-get install -y patch build-essential libbz2-dev libreadline-dev wget curl llvm libncurses5-dev libncursesw5-dev xz-utils tk-dev liblzma-dev m4 dos2unix libopenblas-dev git
#CentOS
yum install -y patch libjpeg-turbo-devel dos2unix openblas git

2. 获取昇腾适配的APEX源码以及原生APEX代码。

# 获取昇腾适配的APEX源码
git clone -b master https://gitee.com/ascend/apex.git
# 在apex目录下获取原生APEX代码
cd apex
git clone https://github.com/NVIDIA/apex.git

3. 切换到原生APEX代码对应分支。

cd apex
git checkout 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a
cd ..

4. 在昇腾适配APEX源码目录的scripts路径下生成昇腾适配全量代码。

cd scripts
bash gen.sh

5. 编译生成昇腾适配的APEX二进制安装包。

cd ../apex
python3 setup.py --cpp_ext --npu_float_status bdist_wheel

6. 安装APEX。

86_64架构

cd dist
pip3 install apex-0.1_ascend-cp37-cp37m-linux_ x86_64.whl

aarch64架构

cd dist
pip3 install apex-0.1_ascend-cp37-cp37m-linux_aarch64.whl

到此,PyTorch训练环境就搭建完毕了,开发者可以将PyTorch网络脚本迁移到昇腾平台执行训练,使用昇腾平台的强大算力。

关于更多文档介绍,可以在昇腾文档中心[1]查看,您也可在“昇腾社区在线课程[2]”板块学习视频课程,学习过程中的任何疑问,都可以在“昇腾论坛[3]”互动交流!

相关参考

[1]昇腾文档中心

[2]昇腾社区在线课程

[3]昇腾论坛

相关推荐

如何将PyTorch模型迁移到昇腾平台

你可能感兴趣的:(pytorch,人工智能,python,昇腾CANN,训练环境)