路径之谜 2016年国赛 深度优先搜索

目录

解题思路

AC代码:

题目描述

小明冒充 XX 星球的骑士,进入了一个奇怪的城堡。

城堡里边什么都没有,只有方形石头铺成的地面。

假设城堡地面是 n×n 个方格。如下图所示。

路径之谜 2016年国赛 深度优先搜索_第1张图片

按习俗,骑士要从西北角走到东南角。可以横向或纵向移动,但不能斜着走,也不能跳跃。每走到一个新方格,就要向正北方和正西方各射一箭。(城堡的西墙和北墙内各有 nn 个靶子)同一个方格只允许经过一次。但不必走完所有的方格。如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?有时是可以的,比如上图中的例子。

本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)

输入描述

第一行一个整数 N (0≤N≤20),表示地面有 N×N 个方格。

第二行 N 个整数,空格分开,表示北边的箭靶上的数字(自西向东)

第三行 N 个整数,空格分开,表示西边的箭靶上的数字(自北向南)

输出描述

输出一行若干个整数,表示骑士路径。

为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号: 0,1,2,3 \cdots⋯

比如,上图中的方块编号为:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

输入输出样例

示例

输入

4
2 4 3 4
4 3 3 3

输出

0 4 5 1 2 3 7 11 10 9 13 14 15

运行限制

  • 最大运行时间:5s
  • 最大运行内存: 256M

解题思路

因为数据不大,直接暴力深搜即可。根据条件剪枝,注意一个格子只能经过一次,要是用visited记录是否走过!

AC代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.StreamTokenizer;
import java.util.Arrays;
import java.util.LinkedList;

public class Main {
    static int N ;
    private static short[][] map;
    private static LinkedList path = new LinkedList<>();
    //棋子的四个方向
    private static int[] dx = new int[]{0,1,0,-1};
    private static int[] dy = new int[]{1,0,-1,0};
    private static boolean[][] visited = new boolean[40][40];
    //结果是否已经打印
    private static boolean flag = false;

    public static void main(String[] args) throws IOException, InterruptedException {
        StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
        in.nextToken();
        N = (int)in.nval;
        map = new short[2][N];
        for (int i = 0; i < N; i++) {
            in.nextToken();
            map[0][i] = (short) in.nval;
        }
        for (int i = 0; i < N; i++) {
            in.nextToken();
            map[1][i] = (short) in.nval;
        }

        //初始化完成
        path.add(0);
        map[0][0]--;
        map[1][0]--;
        visited[0][0]=true;
        dfs(0,0);
    }
    //递归函数
    static boolean dfs(int x, int y){
        if(x==N-1 && y == N-1){
            for (int i = 0; i < N; i++) {
                if(map[0][i] != 0 )
                    return false;
            }
            for (int i = 0; i < N; i++) {
                if(map[1][i] != 0 )
                    return false;
            }
            return true;
        }
        int tx,ty;
        for (int i = 0; i < 4; i++) {
            tx = x + dx[i];
            ty = y + dy[i];
            //检查索引是否越界 是否这不可走
            if(tx < 0 || ty < 0 || tx > N - 1 || ty > N - 1 || map[0][tx] == 0 || map[1][ty] == 0 || visited[tx][ty]){
                continue;
            }
            path.add(tx+ty*N);
            map[0][tx]--;
            map[1][ty]--;
            visited[tx][ty]=true;
            if(dfs(tx,ty)){
                if(!flag ){
                    for (Integer integer : path) {
                        System.out.print(integer + " ");
                    }
                    flag = true;
                }
                return true;
            }
            map[0][tx]++;
            map[1][ty]++;
            visited[tx][ty]=false;
            path.removeLast();
        }
        return false;
    }
}


 

你可能感兴趣的:(蓝桥杯,数据结构与算法,深度优先,算法)