1,确定dp数组以及下标的含义:dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。具体可以区分出如下四个状态:
j的状态为:
很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。
注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
2, 确定递推公式:
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);
达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:
昨天一定是持有股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:
昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];
3,dp数组如何初始化:这里主要讨论一下第0天如何初始化。如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。
4,确定遍历顺序:从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。
5,举例推导dp数组:以 [1,2,3,0,2] 为例,dp数组如下:
Java代码如下:
public int maxProfit(int[] prices) {
if (prices == null || prices.length < 2) {
return 0;
}
int[][] dp = new int[prices.length][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[1][0] = Math.max(dp[0][0], dp[0][1] + prices[1]);
dp[1][1] = Math.max(dp[0][1], -prices[1]);
for (int i = 2; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i]);
}
return dp[prices.length - 1][0];
}
基本思路:这道题相对于122,本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。唯一差别在于递推公式部分,所以主要讲解一下递推公式部分。
这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
Java代码如下:
public int maxProfit(int[] prices, int fee) {
int len = prices.length;
int[][] dp = new int[len][2];
dp[0][0] = -prices[0];
for (int i = 1; i < len; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);
}
return Math.max(dp[len - 1][0], dp[len - 1][1]);
}