代码随想录算法训练营第五十一天|309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费

LeetCode309.最佳买卖股票时机含冷冻期

动态规划五部曲:

1,确定dp数组以及下标的含义:dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。具体可以区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

代码随想录算法训练营第五十一天|309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费_第1张图片 

 

j的状态为:

  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四

很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。

注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态

2, 确定递推公式:

达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]

那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);

达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)

dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

昨天一定是持有股票状态(状态一),今天卖出

即:dp[i][2] = dp[i - 1][0] + prices[i];

达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

昨天卖出了股票(状态三)

dp[i][3] = dp[i - 1][2];

3,dp数组如何初始化:这里主要讨论一下第0天如何初始化。如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。

4,确定遍历顺序:从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5,举例推导dp数组:以 [1,2,3,0,2] 为例,dp数组如下:

代码随想录算法训练营第五十一天|309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费_第2张图片

Java代码如下:

public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
        int[][] dp = new int[prices.length][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[1][0] = Math.max(dp[0][0], dp[0][1] + prices[1]);
        dp[1][1] = Math.max(dp[0][1], -prices[1]);
        for (int i = 2; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i]);
        }
        return dp[prices.length - 1][0];
    }

代码随想录算法训练营第五十一天|309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费_第3张图片

LeetCode714.买卖股票的最佳时机含手续费

基本思路:这道题相对于122,本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。唯一差别在于递推公式部分,所以主要讲解一下递推公式部分。

这里重申一下dp数组的含义:

dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]

所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

Java代码如下:

public int maxProfit(int[] prices, int fee) {
        int len = prices.length;
        int[][] dp = new int[len][2];
        dp[0][0] = -prices[0];
        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);
        }
        return Math.max(dp[len - 1][0], dp[len - 1][1]);
    }

代码随想录算法训练营第五十一天|309.最佳买卖股票时机含冷冻期|714.买卖股票的最佳时机含手续费_第4张图片 

 

你可能感兴趣的:(算法)