- 【指标对比】SMA 和 EMA区别
T-I-M
时间序列
在描述时间序列趋势(如股票价格)时,简单移动平均(SMA)和指数移动平均(EMA)各有特点。以下是详细分析:一、核心对比指标SMAEMA权重分配等权重指数衰减权重滞后性较高较低噪声敏感性较不敏感更敏感计算复杂度简单需要递归计算参数敏感性对窗口大小敏感对衰减因子敏感二、特性分析1.SMA(简单移动平均)公式:SMAt=1n∑i=0n−1Pt−iSMA_t=\frac{1}{n}\sum_{i=0}^
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 蓝桥杯备赛Day12 动态规划1基础
爱coding的橙子
蓝桥杯蓝桥杯动态规划c++算法
动态规划动态规划基础动态规划将复杂问题分解成很多重叠的子问题,再通过子问题的解得到整个问题的解分析步骤:确定状态:dp[i][j]=val,“到第i个为止,xx为j的方案数/最小代价/最大价值”状态转移方程:确定最终状态要求:(1)最优子结构(2)无后效性:已经求解的子问题,不会再受到后续决策的影响。(3)子问题重叠,将子问题的解存储下来两种思路:(1)按题目线性DP数字三角形学习:(1)将整个大
- html.partial mvc5,[ASP.NET Core Razor Pages系列教程]ASP.NET Core Razor Pages中的Partial Views(部分视图)(04)...
安静的小屁孩儿
html.partialmvc5
PartialViews(部分视图)什么是PartialViews?PartialViews(之后统称:部分视图)是包含了HTML代码片段和服务端代码的Razor文件,它同样以.cshtml为扩展名。部分视图可以被包含在任意数量的页面或者布局中。部分视图可以用来将复杂的页面分解成更小的单元,从而减少复杂性,同时也可以在团队开发中被复用。什么时候使用部分视图(PartialViews)部分视图可以处
- Vue3前端开发:组件化设计与状态管理
caihuayuan4
面试题汇总与解析springsqljava大数据课程设计
Vue3前端开发:组件化设计与状态管理一、Vue3组件化设计组件基本概念与特点是一款流行的JavaScript框架,它支持组件化设计,这意味着我们可以将页面分解成多个独立的组件,每个组件负责一部分功能,通过组件的嵌套和复用,可以快速构建复杂的用户界面。组件化设计具有以下特点:组件示例组件选项在上面的代码示例中,我们通过Vue.component方法注册了一个名为my-component的组件,这是
- DAY33 贪心算法Ⅱ
Useee
贪心算法算法
122.买卖股票的最佳时机II-力扣(LeetCode)想到把整体利润分解为每天的利润,就豁然开朗了。classSolution{public:intmaxProfit(vector&prices){intresult=0;for(inti=1;i&nums){intcover=0;if(nums.size()==1)returntrue;for(inti=0;i=nums.size()-1)re
- 【块浮点(BFP)技术:原理、设计及应用】
youngerwang
移动5G测试验证之禅道matlab信息与通信基带工程
文章目录块浮点(BFP)技术:原理、设计及应用摘要关键词:块浮点(BFP)技术;量化;数据压缩;自适应调整;联合编码;硬件实现;Matlab一、引言二、BFP原理(一)基本概念(二)量化过程(三)逆过程(解量化)三、BFP设计(一)块大小选择(二)缩放因子编码(三)量化比特宽度选择四、BFP设计难点解析(一)数据动态特性与块大小适配(二)缩放因子编码的复杂度与效率平衡(三)量化精度与压缩比的最优平
- 线性代数-MIT 18.06-汇总
儒雅的钓翁
数学基础线性代数矩阵
第一讲:方程组的几何解释第二讲:矩阵消元第三讲:乘法和逆矩阵第四讲:AAA的LULULU分解第五讲:转换、置换、向量空间R第六讲:列空间和零空间第七讲:求解Ax=0Ax=0Ax=0,主变量,特解第八讲:求解Ax=bAx=bAx=b:可解性和解的结构第九讲:线性相关性、基、维数第十讲四个基本子空间第十一讲:矩阵空间、秩1矩阵和小世界图第十二讲:图和网络第十三讲:复习一第十四讲:正交向量与子空间第十五
- OpenManus 架构的详细技术实现
大势下的牛马
搭建本地gpt架构OpenManusManusAgent
一、OpenManus架构的详细技术实现1.核心分层架构的深度解析底层:LLM层模型选择与适配:OpenManus允许用户替换底层LLM(如mPLUG-Owl3、Qwen、Llama等),通过统一接口调用模型API,实现跨模型兼容性Prompt工程设计:用户输入的自然语言指令通过精心设计的Prompt转换为结构化指令。例如,PlanningTool使用预定义的Prompt模板(如请将任务分解为可执
- 拥抱健康养生,畅享美好生活
lanlande33
生活
在快节奏的现代生活中,健康养生已成为我们追求高品质生活的关键。它并非遥不可及的高深学问,而是融入在日常的点点滴滴,是一种积极的生活态度,能让我们身心愉悦,活力满满。合理饮食是健康养生的基石。多吃新鲜蔬果,它们富含维生素、矿物质与膳食纤维,像橙子能提供丰富维C,增强免疫力;芹菜则促进肠道蠕动,预防便秘。粗粮也不可少,燕麦、糙米等能缓慢释放能量,让我们保持充沛精力。减少高油高糖高盐食物的摄入,炸鸡、蛋
- 拥抱健康养生,开启活力生活
lanlande33
生活
在快节奏的现代社会,健康养生不再是一句口号,而是我们对高品质生活的追求。它贯穿于日常的点点滴滴,对我们的身心状态有着深远影响。饮食养生是基础。秉持均衡原则,每日的餐盘应是色彩斑斓的。新鲜蔬菜富含维生素与膳食纤维,像菠菜、西兰花,助力肠道蠕动,维持身体代谢平衡;水果提供丰富果酸与天然糖分,苹果、橙子等,补充水分与营养。优质蛋白质不可或缺,瘦肉、鱼类、豆类都是上佳之选,为身体修复与生长提供原料。同时,
- 使用OTP动态令牌认证
yangtom249
Pythonpython
为加强网络安全管理,降低帐号被冒用、盗用等带来的风险,有些系统启用OTP手机令牌双因子认证登录,即在原有用户名+密码认证的基础上,增加OTP动态口令认证。基于OTP算法的动态令牌加强了帐号的安全性,简单易用。1、什么是OTP动态令牌认证?OTP(One-TimePassword)是一种基于共享密钥和时间戳算法的一次性密码。一般每30或60秒产生一个新口令,在客户端的动态口令和服务器的动态口令验证时
- PostgreSQL_数据使用与日数据分享
程序猿与金融与科技
数据库postgresql
目录前置:1使用1.1获取前复权因子1.2查询股票的纵向数据1.3查询股票的横向数据2日数据分享(截止至:2025-03-21)总结前置:本博文是一个系列。在本人“数据库专栏”-》“PostgreSQL_”开头的博文。本文为该系列最后一篇。1使用1.1获取前复权因子访问优矿官网ticker_list=[]field_list=['secID','tradeDate','accumAdjFactor
- 高效利用AI处理大型编程任务
大囚长
大模型人工智能
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。一、任务分解的核心策略模块化功能拆分通过分层架构设计将系统拆分为独立模块(如用户认证、支付接口、数据存储),每个模块的代码量控制在AI模型的上下文窗口内(如ClaudeMax的200k窗口可处理约2万行代码)。例如开发电商系统时,可分解为「购物车逻辑」「库存管理」「订单流水」等子模
- MATLAB程序代编液压系统电机非线性滑膜伺服模糊控制simulink仿真
matlabgoodboy
matlab开发语言
在MATLAB中设计和仿真一个液压系统电机的非线性滑模伺服模糊控制系统,可以通过Simulink来实现。以下是一个大致的步骤指南,帮助你完成这个任务。由于这是一个复杂的系统,我们需要逐步分解问题并构建模型。1.系统描述假设我们有一个液压系统,其电机通过某种方式(例如泵)控制液压缸。目标是设计一个控制器,使得液压缸的位置或速度能够跟踪期望的轨迹。我们将使用滑模控制(SlidingModeContro
- C语言复习笔记6---while循环for循环
.又是新的一天.
C语言复习笔记c语言算法c++
感谢张学长为大家整理的笔记~考点整合A+B问题分离一个整数每一位从后往前从前往后→字符数组(字符串)/看成一堆字符栈(先入后出)→递归while→循环版的if(while循环的直接应用→模拟)gcd和lcm打擂法求max,min判断素数O(n)O(sqrt(n))→分离因子的快捷的求法打印素数表数列求和、斐波那契数列(递推)递推和递归递推往往用迭代(循环)来实现讲从前往后分离整数的递归写法实现方式
- 对比与详解:QR 分解、奇异值分解(SVD)与 Schur 分解及其他可产生正交基的方法
DuHz
机器学习人工智能信号处理算法矩阵信息与通信线性代数
对比与详解:QR分解、奇异值分解(SVD)与Schur分解及其他可产生正交基的方法在数值线性代数与矩阵分析中,常见的能产生正交(或酉)矩阵的分解方法包括QR分解、奇异值分解(SVD)、Schur分解等。这些方法虽然都会产生一个(或多个)正交矩阵,但它们在适用范围、分解形式、计算重点和应用场景等方面各不相同。本文将尽量对这些分解方法进行系统地介绍与对比。1.正交矩阵(Orthogonal/Unita
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- 奇异值分解(SVD)
文弱_书生
乱七八糟神经网络人工智能
奇异值分解(SVD)介绍奇异值分解(SVD),这是最强大的矩阵分解技术之一。SVD广泛应用于机器学习、数据科学和其他计算领域,用于降维、降噪和矩阵近似等应用。与仅适用于方阵的特征分解不同,SVD可以应用于任何矩阵,使其成为一种多功能工具。在这里煮啵将分解SVD背后的理论,通过手动计算示例进行分析,并展示如何在Python中实现SVD。在本节结束时,您将清楚地了解SVD的强大功能及其在机器学习中的应
- rust学习笔记16-206.反转链表(递归)
水蜜桃one
学习笔记链表
rust函数递归在14中已经提到,接下来我们把206.反转链表,用递归法实现递归函数通常包含两个主要部分:基准条件(BaseCase):递归终止的条件,避免无限递归。递归步骤(RecursiveStep):将问题分解为更小的子问题,并调用自身来解决这些子问题。//Definitionforsingly-linkedlist.#[derive(PartialEq,Eq,Clone,Debug)]pu
- 【C++】动态规划从入门到精通
諰.
动态规划c++
一、动态规划基础概念详解什么是动态规划动态规划(DynamicProgramming,DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的优化算法。它适用于具有以下两个关键性质的问题:最优子结构:问题的最优解包含子问题的最优解重叠子问题:不同决策序列会重复求解相同的子问题下面用一些例子(由浅入深)了解动态规划1.1斐波那契数列递归实现解析intfib(intn){if(n>d
- 统计领域英语专业词汇补充
月亮月亮要去太阳
算法其他
应统考研复试:多元统计、回归分析、时间序列三大领域专业词汇翻译以下是多元统计、回归分析和时间序列三大统计领域的常见专业词汇的英汉互译,按类别整理:多元统计(MultivariateStatistics)英文术语中文术语MultivariateAnalysis多元分析PrincipalComponentAnalysis(PCA)主成分分析FactorAnalysis因子分析ClusterAnalys
- 一种基于swagger 2.0 yaml文件的接口异常用例生成算法,单因子变量法
xiyubaby.17
java测试用例
详细解决方案一、设计思路基于Swagger2.0的YAML定义,为每个参数生成两类测试用例:正常用例:所有参数均符合约束。异常用例:仅一个参数违反约束,其他参数正常,且每个参数需覆盖所有可能的异常场景。二、实现步骤解析Swagger文件使用SnakeYAML解析YAML,提取参数定义(类型、约束、是否必填等)。生成正常值根据参数类型和约束生成合法值。生成异常值针对每个参数的所有约束,生成违反每个约
- “平均工作电流 10mA / 24HRAVG” 的含义 (由DS-R1生成)
兴趣使然_
嵌入式硬件相关ai
“平均工作电流10mA/24HRAVG”的含义可解析如下:分解解释平均工作电流10mA指设备在正常工作状态下,平均消耗的电流为10毫安(mA)。这里的“平均”可能包含不同工作模式(如运行、待机、休眠)或周期性任务下的综合电流值。/24HRAVG“24HR”表示24小时(Hour),“AVG”表示平均(Average)。组合含义:按24小时为周期计算的平均电流,即设备在一天内的整体平均功耗为10mA
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- 量子密码学技术架构解析与程序员视角
算法
量子计算威胁模型分析传统公钥密码体系(RSA/ECC)的安全假设基于:大数分解问题的计算复杂度(RSA)椭圆曲线离散对数问题(ECC)有限域离散对数问题(DSA)Shor算法的时间复杂度为O((logN)^3),当量子比特数达到阈值时:2048位RSA可在8小时内破解(理论值)ECC-256的破解时间将降至多项式级别Grover算法对对称密码的影响:AES-256的有效安全性降至2^128哈希函数
- 混合整数非线性规划的松弛与分解方法
Waiyuet Fung
混合整数非线性规划松弛方法分解技术启发式算法全局优化
背景简介混合整数非线性规划(MINLPs)作为运筹学中的一个重要领域,涉及到优化问题的连续和离散变量混合,在工程设计、生产调度、资源分配等多个领域发挥着关键作用。本书由I.Nowak撰写,旨在深入探讨这一复杂的优化问题及其解决方案。MINLPs基础概念在本书的第一部分,Nowak介绍了MINLPs的基本概念。MINLPs的目标是寻找一组连续和整数变量的最优组合,以最小化或最大化某个非线性目标函数。
- OpenCV第1课OpenCV 介绍及其树莓派下环境的搭建
嵌入式老牛
树莓派之OpenCVopencv人工智能计算机视觉
1.机器是如何“看”的我们人类可以通过眼睛看到五颜六色的世界,是因为人眼的视觉细胞中存在分别对红、绿、蓝敏感的3种细胞。其中的光感色素根据光线的不同进行不同比例的分解,从而让我们识别到各种颜色。对人工智能而言,学会“看”也是非常关键的一步。那么机器人是如何看到这个世界的呢?这就涉及到人工智能方向重要的分支--机器视觉。机器视觉即用机器人代替人眼来做测量和判断,通过机器视觉产品(即图像摄取装置,分C
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- 力扣hot100——283.移动零
码凡
算法leetcode
283.移动零给定一个数组nums,编写一个函数将所有0移动到数组的末尾,同时保持非零元素的相对顺序。请注意,必须在不复制数组的情况下原地对数组进行操作。示例1:输入:nums=[0,1,0,3,12]输出:[1,3,12,0,0]示例2:输入:nums=[0]输出:[0]题解:对于此题可以从反方向来思考,需要将所有的零找出来则我们可以找出所有非零数,再将零添加到数组的末尾。题目要求在数组原地进行
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =