- 面向服务架构(SOA)详细介绍
huaqianzkh
架构理解与实践架构
面向服务架构(SOA)详细介绍1.概述面向服务架构(Service-OrientedArchitecture,SOA)是一种软件设计模式,通过将应用程序功能分解为可重用的服务来构建系统。这些服务通过定义良好的接口和协议进行通信,通常使用网络调用(如Web服务)来实现。2.核心概念服务(Service):一个自包含的功能单元,提供特定的业务功能。服务接口(ServiceInterface):定义了服
- 基于 LLM 的智能运维 Agent 系统设计与实现
LLM教程
人工智能embeddingLLMpython大模型Agent智能体
摘要本文详细介绍了一个基于大语言模型(LLM)的智能运维Agent系统的设计与实现。该系统采用多Agent协同的架构,通过事件驱动的方式实现了自动化运维流程。系统集成了先进的AI能力,能够实现故障自动诊断、预测性维护、知识沉淀等核心功能。一、运维Agent架构设计在设计智能运维Agent系统时,我们采用了模块化和事件驱动的架构思想,将复杂的运维场景分解为多个独立的能力域,并通过消息总线实现各组件的
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- CAMEL: 一个高度抽象的框架,依赖底层实现来完成任务
gs80140
基础知识科谱AI人工智能
CAMEL:一个高度抽象的框架,依赖底层实现来完成任务CAMEL(ComposableandModularExecutionLayers)框架是一个高度抽象的开发架构,设计理念旨在简化复杂系统的开发过程。通过将系统分解为多个模块化、可组合的执行层,CAMEL能够提供灵活的结构,方便开发者根据需求进行配置和扩展。尽管框架本身提供了强大的抽象层,但它在实际运行时依赖于一些底层实现来处理具体的任务和计算
- Spring Boot中使用RabbitMQ(2)
D1561691
程序员java-rabbitmqspringbootrabbitmq
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!MessageBroker与AMQP简介MessageBroker是一种消息验证、传输、路由的架构模式,其设计目标主要应用于下面这些场景:消息路由到一个或多个目的地消息转化为其他的表现方式执行消息的聚集、消息的分解,并将结果发送到他们的目的地,然后重新组合相应返回给消息用户调用Web服务来检索数据响
- qt的QSizePolicy的使用
qq_43361844
QTQSizePolicy
使用QSizePolicy设置控件的伸缩因子在Qt中,QSizePolicy控制控件如何在布局中伸缩。如果想要影响控件的大小调整行为,可以通过QSizePolicy::setHorizontalStretch()和QSizePolicy::setVerticalStretch()设置伸缩因子。基本用法假设我们有一个QWidget或者QLabel需要在QHBoxLayout或QVBoxLayout里
- 计算四个锚点TOA定位中GDOP的详细步骤和MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab开发语言
该MATLAB代码演示了在三维空间中,使用四个锚点的TOA(到达时间)定位技术计算几何精度衰减因子(GDOP)的过程。如需帮助,或有导航、定位滤波相关的代码定制需求,请联系作者文章目录DOP计算原理MATLAB例程运行结果示例关键点说明扩展方向另有文章:多锚点Wi-Fi定位和基站选择方法,基于GDOP、基站距离等因素DOP计算原理GDOP(几何精度衰减因子)用于评估定位系统中锚点几何分布对定位精度
- JD短视频带货项目详解 | 普通素人月入过万的新机会
沐凡资源
全文检索
一、项目本质JD短视频带货是京东近几年重点扶持的「内容电商」项目,创作者通过发布商品种草短视频,用户点击视频中的商品链接下单后,即可获得佣金分成。核心逻辑:用短视频内容激活京东站内流量,对标抖音的「兴趣电商」,但竞争小得多。二、为什么现在入场是红利期?平台疯狂撒钱:JD2023年拿出10亿现金补贴,新人发5条视频就送50元流量缺口大:JD用户习惯搜索购物,短视频内容占比不足5%,官方急需创作者补位
- 代码随想录 Day 32 |【第八章 贪心算法 part 01】理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和
Accept17
贪心算法算法
一、理论基础代码随想录1.什么是贪心贪心的本质是选择每一阶段的局部最优,从而达到全局最优。2.贪心的解题步骤将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解二、455.分发饼干代码随想录1.解题思路尽量用最大的饼干去满足胃口大的孩子。2.代码实现(1)因为是用大饼干满足胃口大的孩子,所以对饼干、孩子胃口数组排序。定义一个result变量,用于记录喂饱了
- 三:网络为什么要分层:OSI模型与TCP/IP模型
W楠
Web协议详解与抓包实战网络tcp/ip网络协议
引言现代网络通信离不开分层模型的支撑,它们为数据传输提供了清晰的结构和接口。常见的网络分层模型有OSI模型和TCP/IP模型,这两者各自为网络协议栈的设计提供了指导。通过网络分层,复杂的网络通信过程被分解成多个独立的层次,每一层专注于完成特定的功能,从而使得网络协议的设计、实现和维护更加高效和灵活。本文将深入探讨网络分层的意义,分析OSI和TCP/IP模型的各层功能,并探究分层模型在网络通信中的重
- 什么是RTMP 和 RTSP?它们之间有什么区别?
wljslmz
网络技术RTMPRTSP
你好,这里是网络技术联盟站。视频盛行的时代,流媒体技术越来越重要,在本文中,我们将讨论两种流行的流媒体协议:RTMP和RTSP。什么是流协议?简单地说,流协议就是在两个通信系统之间传输多媒体文件的一套规则,它定义了视频文件将如何分解为小数据包以及它们在互联网上传输的顺序,RTMP与RTSP是比较常见的流媒体协议。RTMP英文全称:Real-TimeMessagingProtocol中文意思:实时消
- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- 管式超滤膜浓缩分离技术在食品行业中的应用优势
莱特莱德
膜分离设备
在当今食品加工技术日新月异的时代,高效、安全的生产方式成为了行业追求的目标。管式超滤膜浓缩分离技术作为现代膜分离技术的重要组成部分,已在食品行业中展现出其独特的价值与优势,尤其是在分离浓缩领域。1.低温处理,保护生物活性管式超滤膜系统的一大亮点在于其低温分离过程,无需加热即可完成物质的分离与浓缩。这对于处理热敏感性食品原料(如蛋白质、酶、维生素等)尤为重要,因为它能有效防止热变性,保留原料中的生物
- python期权定价:欧式香草期权-二叉树
2401_88673555
期权定价python金融
1、函数实现:binomial_european_option_price函数基于二叉树模型计算欧式期权的价格,其中:二叉树构建:通过上涨因子u=e^(σ√Δt)和下跌因子d=1/u模拟标的资产价格路径。风险中性概率:p=(e^(rΔt)-d)/(u-d),用于计算未来现金流的期望值。折现因子:df=e^(-rΔt),将未来价值折现到当前。初始化到期价值:计算到期时所有可能价格路径的期权内在价值。
- 墙裂建议收藏,整理100道Python练手题目
Python_bh
python实例
墙裂建议收藏,100道Python练手题目目录实例001:数字组合实例002:“个税计算”实例003:完全平方数实例004:这天第几天实例005:三数排序实例006:斐波那契数列实例007:copy实例008:九九乘法表实例009:暂停一秒输出实例010:给人看的时间实例011:养兔子实例012:100到200的素数实例013:所有水仙花数实例014:分解质因数实例015:分数归档实例016:输出
- 2023年研究生数学建模竞赛优秀论文汇总
Xiaoxll12
数学建模
A题:WLAN网络信道接入机制建模B题:DFT类矩阵的整数分解逼近:解析与优化方法C题:大规模创新类竞赛评审方案研究D题:区域双碳目标与路径规划研究E题:出血性脑卒中临床智能诊疗模型的建立F题:强对流降水临近预报收集的历年研究生数学建模竞赛代码(部分)
- Eigen3的库使用
憨憨2号
Eigen3c++
文章目录eigen3lib的使用向量向量一元操作向量二元操作共轭矩阵矩阵赋值转置矩阵块操作取行取列取任意大小的块矩阵分解Cholesky分解坐标变换坐标轴旋转旋转矩阵旋转四元数欧拉角旋转向量数据类型转化double数字转化为矩阵eigen3lib的使用向量Eigen::Vector3fu;//3行*1列列向量向量一元操作u.norm();//向量的模u.transpose()//向量的转置向量二元
- 我国化学信息学研究的地位与近期研究进展
xoaxo
算法优化生物数据库网络工作
近两年来,我国的化学信息学研究得到了快速发展,在某些专题的研究方面达到了国际前沿水平。在理论与计算化学研究中,基于第一性原理的新型并行计算方法被提出并用于纳米材料电子结构的高效计算[24],轨道分解方法被用来简化磁性质的四分量相对论计算[25]。同时,量化计算被越来越多地应用于团簇优化[26]及材料性质的预测[27],并越来越注重与实际结合用于反应过程过渡态和催化机理研究[28]。此外,密度泛函理
- 【Elasticsearch】文本分析Text analysis概述
risc123456
Elasticsearchelasticsearch
文本分析概述文本分析使Elasticsearch能够执行全文搜索,搜索结果会返回所有相关的结果,而不仅仅是完全匹配的结果。如果你搜索“Quickfoxjumps”,你可能希望找到包含“Aquickbrownfoxjumpsoverthelazydog”的文档,你也可能希望找到包含相关词汇(如“fastfox”或“foxesleap”)的文档。分析通过分词实现全文搜索:将文本分解成更小的单元,称为词
- 云原生AI Agent应用安全防护方案最佳实践(上)
佛州小李哥
AWS技术AI安全人工智能亚马逊云科技awsai语言模型安全云计算
当下,AIAgent代理是一种全新的构建动态和复杂业务场景工作流的方式,利用大语言模型(LLM)作为推理引擎。这些Agent代理应用能够将复杂的自然语言查询任务分解为多个可执行步骤,并结合迭代反馈循环和自省机制,利用工具和Agent背后的API生成最终结果,返回给终端用户。这种方法需要评估Agent应用的鲁棒性,尤其是对于那些可能存在对抗攻击或有害内容的用户场景。亚马逊云科技BedrockAgen
- 【开发语言】层次状态机(HSM)介绍
CSUC
qt开发语言
层次状态机(HierarchicalStateMachine,HSM),从基本原理、结构设计、实现方法以及如何结合Qt进行具体实现等方面进行分析。1.层次状态机的基本原理层次状态机是一种用于管理复杂系统行为的状态机模型,它通过将状态组织成层次结构来简化设计和维护。这种结构使得复杂的逻辑可以分解为更小、更易于管理的部分。关键概念:状态(State):系统在某一时刻所处的条件或模式。事件(Event)
- 第二章:9.5 多个输出的分类
望云山190
分类数据挖掘人工智能
多标签分类问题多标签分类问题是一种特殊的分类问题,其中每个输入样本可以同时属于多个类别。这与单标签分类问题不同,在单标签分类问题中,每个输入样本只能属于一个类别。例如,在自动驾驶汽车的场景中,一张图像可能同时包含汽车、公交车和行人,因此在这种情况下,每个图像可以有多个相关的标签。构建多标签分类神经网络的方法方法一:独立训练多个神经网络一种方法是将多标签分类问题分解为多个独立的二分类问题。具体来说,
- 解锁动态规划的奥秘
zxfbx
动态规划算法
前言:在动态规划的众多问题中,多状态DP问题是一个非常重要的类别。它的难点在于如何设计合适的状态表示和转移方程,从而高效地解决问题。多状态DP的核心思想在于:针对问题的不同属性或限制条件,将状态表示扩展为多个维度,使得状态可以更加精确地描述问题的子结构。这种方法既可以帮助我们更好地分解问题,又能够在求解过程中保留更多的信息,从而为最终的结果提供完整的支持。在实际应用中,多状态DP常用于解决路径规划
- 软件工程-模块化设计
夏旭泽
软件工程
分解(decomposition)C(P1+P2)>C(P1)+C(P2)E(P1+P2)>E(P1)+E(P2)C为问题的复杂程度,E为解题需要的工作量关于模块的一些概念深度:系统结构中的控制层数宽度:同一层次的模块总数的最大值扇入&扇出:如图所示作用范围:受到该模块内部一个判定影响的所有模块的集合(同样包括控制范围以外的模块)控制范围:包括该模块本身及所有下属模块的集合(优化原则:作用范围应该
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 从零开始刷leetcode数组的“度”C语言编程解答
多宝气泡水
从零开始leetcode算法数据结构leetcodec语言哈希算法
描述给定一个非空且只包含非负数的整数数组nums,数组的度的定义是指数组里任一元素出现频数的最大值。你的任务是在nums中找到与nums拥有相同大小的度的最短连续子数组,返回其长度。示例1:输入:nums=[1,2,2,3,1]输出:2解释:输入数组的度是2,因为元素1和2的出现频数最大,均为2。连续子数组里面拥有相同度的有如下所示:[1,2,2,3,1],[1,2,2,3],[2,2,3,1],
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 【Elasticsearch】分词器概述
risc123456
Elasticsearchelasticsearch
Elasticsearch分词与神经网络分词的区别Elasticsearch的分词过程产生的是优化用于搜索和检索的语言学分词。这与机器学习和自然语言处理中的神经分词不同。神经分词器将字符串转换为更小的子词分词,这些分词被编码为向量,供神经网络使用。Elasticsearch没有内置的神经分词器。分词器接收一个字符流,将其分解为单独的分词(通常是单个单词),并输出一个分词流。例如,`whitespa
- 位图的深入解析:从数据结构到图像处理与C++实现
Exhausted、
机器学习计算机视觉人工智能图像处理c++算法数据结构开发语言
在学习优选算法课程的时候,博主学习位运算了解到位运算的这个概念,之前没有接触过,就查找了相关的资料,丰富一下自身,当作课外知识来了解一下。位图(Bitmap)是一种用于表示图像的数据结构,它将图像分解为像素的二维网格,每个像素的颜色值存储在一个矩阵中。位图广泛应用于计算机图形学、图像处理和计算机视觉等领域。目录1.位图的基本概念1.1像素1.2分辨率1.3颜色深度2.位图的存储格式2.1BMP格式
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =