黑猴子的家:MapReduce Reduce端-表合并(数据倾斜)案例一

数据
https://www.jianshu.com/p/cb1914c1aaf5

通过将关联条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联。

1、创建商品和订合并后的bean类

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

public class TableBean implements Writable {
    private String order_id; // 订单id
    private String p_id; // 产品id
    private int amount; // 产品数量
    private String pname; // 产品名称
    private String flag;// 表的标记

    public TableBean() {
        super();
    }

    public TableBean(String order_id, String p_id, int amount, String pname, String flag) {
        super();
        this.order_id = order_id;
        this.p_id = p_id;
        this.amount = amount;
        this.pname = pname;
        this.flag = flag;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }

    public String getOrder_id() {
        return order_id;
    }

    public void setOrder_id(String order_id) {
        this.order_id = order_id;
    }

    public String getP_id() {
        return p_id;
    }

    public void setP_id(String p_id) {
        this.p_id = p_id;
    }

    public int getAmount() {
        return amount;
    }

    public void setAmount(int amount) {
        this.amount = amount;
    }

    public String getPname() {
        return pname;
    }

    public void setPname(String pname) {
        this.pname = pname;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(order_id);
        out.writeUTF(p_id);
        out.writeInt(amount);
        out.writeUTF(pname);
        out.writeUTF(flag);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.order_id = in.readUTF();
        this.p_id = in.readUTF();
        this.amount = in.readInt();
        this.pname = in.readUTF();
        this.flag = in.readUTF();
    }

    @Override
    public String toString() {
        return order_id + "\t" + pname + "\t" + amount + "\t" ;
    }
}

2、编写TableMapper程序

import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class TableMapper extends Mapper{
    TableBean bean = new TableBean();
    Text k = new Text();
    
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        
        // 1 获取输入文件类型
        FileSplit split = (FileSplit) context.getInputSplit();
        String name = split.getPath().getName();
        
        // 2 获取输入数据
        String line = value.toString();
        
        // 3 不同文件分别处理
        if (name.startsWith("order")) {// 订单表处理
            // 3.1 切割
            String[] fields = line.split(",");
            
            // 3.2 封装bean对象
            bean.setOrder_id(fields[0]);
            bean.setP_id(fields[1]);
            bean.setAmount(Integer.parseInt(fields[2]));
            bean.setPname("");
            bean.setFlag("0");
            
            k.set(fields[1]);
        }else {// 产品表处理
            // 3.3 切割
            String[] fields = line.split(",");
            
            // 3.4 封装bean对象
            bean.setP_id(fields[0]);
            bean.setPname(fields[1]);
            bean.setFlag("1");
            bean.setAmount(0);
            bean.setOrder_id("");
            
            k.set(fields[0]);
        }
        // 4 写出
        context.write(k, bean);
    }
}

3、编写TableReducer程序

import java.io.IOException;
import java.util.ArrayList;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class TableReducer extends Reducer {

    @Override
    protected void reduce(Text key, Iterable values, Context context)
            throws IOException, InterruptedException {

        // 1准备存储订单的集合
        ArrayList orderBeans = new ArrayList<>();
        // 2 准备bean对象
        TableBean pdBean = new TableBean();

        for (TableBean bean : values) {

            if ("0".equals(bean.getFlag())) {// 订单表
                // 拷贝传递过来的每条订单数据到集合中
                TableBean orderBean = new TableBean();`
                try {
                    BeanUtils.copyProperties(orderBean, bean);
                } catch (Exception e) {
                    e.printStackTrace();
                }

                orderBeans.add(orderBean);
            } else {// 产品表
                try {
                    // 拷贝传递过来的产品表到内存中
                    BeanUtils.copyProperties(pdBean, bean);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }

        // 3 表的拼接
        for(TableBean bean:orderBeans){
            bean.getPname(pdBean.getPname());
            
            // 4 数据写出去
            context.write(bean, NullWritable.get());
        }
    }
}

4、编写TableDriver程序

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class TableDriver {

    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 2 指定本程序的jar包所在的本地路径
        job.setJarByClass(TableDriver.class);

        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(TableMapper.class);
        job.setReducerClass(TableReducer.class);

        // 4 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(TableBean.class);

        // 5 指定最终输出的数据的kv类型
        job.setOutputKeyClass(TableBean.class);
        job.setOutputValueClass(NullWritable.class);

        // 6 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

5、运行程序查看结果

1001    小米  1   
1001    小米  1   
1002    华为  2   
1002    华为  2   
1003    格力  3   
1003    格力  3   

缺点:这种方式中,合并的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜
解决方案: map端实现数据合并

6、Code -> GitHub

https://github.com/liufengji/hadoop_mapreduce.git

你可能感兴趣的:(黑猴子的家:MapReduce Reduce端-表合并(数据倾斜)案例一)