- 蓝桥杯2023年第十四届省赛真题-岛屿个数
撰卢
蓝桥杯算法职场和发展
目录题目题目描述输入格式输出格式样例输入样例输出思路:两次DFS(染色法+合并)-Dotcpp编程社区代码:题目题目描述小蓝得到了一副大小为M×N的格子地图,可以将其视作一个只包含字符‘0’(代表海水)和‘1’(代表陆地)的二维数组,地图之外可以视作全部是海水,每个岛屿由在上/下/左/右四个方向上相邻的‘1’相连接而形成。在岛屿A所占据的格子中,如果可以从中选出k个不同的格子,使得他们的坐标能够组
- 从RNN循环神经网络到Transformer注意力机制:解析神经网络架构的华丽蜕变
熊猫钓鱼>_>
神经网络rnntransformer
1.引言在自然语言处理和序列建模领域,神经网络架构经历了显著的演变。从早期的循环神经网络(RNN)到现代的Transformer架构,这一演变代表了深度学习方法在处理序列数据方面的重大进步。本文将深入比较这两种架构,分析它们的工作原理、优缺点,并通过实验结果展示它们在实际应用中的性能差异。2.循环神经网络(RNN)2.1基本原理循环神经网络是专门为处理序列数据而设计的神经网络架构。RNN的核心思想
- 揭秘 LeetCode 数据结构与算法的高效学习方法
数据结构与算法学习
leetcode学习方法算法ai
揭秘LeetCode数据结构与算法的高效学习方法关键词:LeetCode、数据结构、算法、高效学习、解题技巧、知识体系、面试准备摘要:本文以“如何高效通过LeetCode学习数据结构与算法”为核心,结合新手常见痛点(如刷题没方向、刷完就忘、无法举一反三),通过生活化类比、具体案例拆解和可操作的学习方法,系统讲解从“入门到精通”的全流程。无论是求职准备的程序员,还是想提升编程能力的学习者,都能从中找
- 第十五届蓝桥杯嵌入式客观题真题(第二场)(个人错点总结)
lo卖火柴的小熊猫
电子相关竞赛分享蓝桥杯职场和发展嵌入式硬件
题目忘记拷贝了--,回忆到的写一下1.常见放大器的功能有(ABCD)A.放大B.滤波C.振荡D.比较X.stm32的ADC功能描述正确的是(ABCD)A.自校准B.12位采样精度C.单/多采集设置D.软件设置左靠右靠数据阵列X.RS485旁路的对称电阻作用.(D)A.B.静电保护C.防止浪涌D.防止信号反射X.BUCK电路的电平转换功能(D)A.AC/ACB.AC/DCC.DC/ACD.DC/DC
- 大一新生第一次参加蓝桥杯(C/C++组),只学C够吗?怎么备赛?个人经验分享
老虎0627
蓝桥杯
个人感受(唠叨唠叨)我是2023级的物联网工程专业的一名大一新生,在大一的下半学期有幸通过校赛,参加了第十五届蓝桥杯软件赛,其实我自己都没想到大一就能参加蓝桥杯,因为当时只会C语言,也很迷茫,到底该怎么备赛?剩的时间比较少到底要不要学习C++。到底要不要学C++?我在蓝桥杯正式比赛前特别纠结要不要学c++,因为当时省的时间比较少,而且会有担心学c++的一些语法会不会把它跟c语言搞混,到时候在考场忘
- 蓝桥杯C++组算法知识点整理 · 考前突击(上)【小白适用】
南星六月雪
C++学习笔记南星六月雪的手札c++蓝桥杯开发语言算法数据结构
【背景说明】本文的作者是一名算法竞赛小白,在第一次参加蓝桥杯之前希望整理一下自己会了哪些算法,于是有了本文的诞生。分享在这里也希望与众多学子共勉。如果时间允许的话,这一系列会分为上中下三部分和大家见面,祝大家竞赛顺利!【文风说明】本文主要会用代码+注释的方式来解释内容。相信学过编程的人都会发现程序比长篇大论更易理解!目录一、语言基础1.1编程基础1.2竞赛常用库函数1.2.1sort函数1.2.2
- 第十五届蓝桥杯C++B组国赛题解+复盘总结
Savior`L
蓝桥杯蓝桥杯c++
文章目录1、合法密码2、选数概率3、蚂蚁开会4、立定跳远5、最小字符串6、数位翻转7、数星星8、套手镯9、挑石头10、最长回文前后缀总结本人目标是国一,昨天模拟做了一遍,结果如下图,这水平感觉远远不够。现在已经全部补完,发现了许多问题,好多该得到的分数没有得到,总结记录一下。1、合法密码赛时暴力枚举,官方正解是把非字母非数字算作字符,这点与我的想法一致,但是代码就是写错了,在数字处忘记contin
- 【蓝桥杯选拔赛真题98】Scratch扑克牌排序 第十五届蓝桥杯scratch图形化编程 少儿编程创意编程选拔赛真题解析
小兔子编程
scratch扑克牌scratch蓝桥杯题目scratch蓝桥杯真题第十五届蓝桥杯scratch题scratch扑克牌排序scratch排序scratch案例
目录scratch扑克牌排序一、题目要求编程实现二、案例分析1、角色分析2、背景分析3、前期准备三、解题思路1、思路分析2、详细过程四、程序编写五、考点分析六、推荐资料1、入门基础2、蓝桥杯比赛3、考级资料4、视频课程5、python资料scratch扑克牌排序第十五届青少年蓝桥杯scratch编程选拔赛真题解析一、题目要求编程实现1)点击绿旗,在舞台上出现4张点数不同的扑克牌,牌上的点数是随机的
- 蓝桥杯51单片机设计
#矩阵键盘#①IO线与关系思考,俩个引脚:一个输入高电平一个输入低电平,当俩者接到一起他们的点评情况是什么?单片机IO口内部等效图②矩阵键盘原理判断按键按下的原理:如果未按下时俩个引脚的电平不一样(一高一低),则按下时高电平的引脚为低电平,我们只需要检测高电平引脚是否变为低电平就可以判断按键是否被按下(总结:发生变化的总是高电平的引脚)③矩阵键盘逐行扫描法先让第一行按键的公共引脚为低电平,第二行到
- 蓝桥杯 2n皇后问题
cccyi7
深度优先搜索蓝桥杯c++深度优先搜素回溯
题目描述样例输入:思路本题考查的是深度优先搜索+回溯。对比N皇后的问题,此题需要在N皇后的基础上再放一个皇后,且条件也要符合皇后在棋盘上的规则,所以我们可以先深搜去放黑皇后,每放一个黑皇后给当前棋盘对应的位置标志为2(2代表黑皇后),所以dfs就需要一个标志代表当前是深搜放黑皇后还是白皇后,我们用flag来表示。2表示黑皇后,3表示白皇后。N皇后的基本解法是,我们暴力枚举,我们可以试一试第一行的第
- 蓝桥杯51单片机设计
#超声波原理#①超声波测距原理:声波反射原理声波分类:超声波测距原理超声波频率越高,波长越短,反身性越强,衍射性越弱②超声波模块原理发射原理跳线帽接收原理问题:1.超声波发射模块需要一直发射吗?不需要,否则很难确定接收的回波对应哪一个发射波所以我们一般发射较短时间2.发射持续时间多久?一般是5~8个周期,这个就大致取一个即可若为5个周期,t=12us*10程序设计:一般用定时器0①产生一个24us
- 蓝桥杯2023国赛-01游戏
weixin_66009678
蓝桥杯游戏深度优先
本题的dfs还是比较复杂的,需要兼顾的条件比较多。这一题是我看了其他人的题才写出来的,菜菜捏,哈哈哈哈哈!!!然后这一题如何确保行之前不相同,是通过二进制来的,具体的在代码中给出了详解。直接上代码://https://www.lanqiao.cn/problems/17100/learning/?page=1&first_category_id=1&sort=students_count&tags
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 搜索之BFS
Luther coder
宽度优先c++
目录一.BFS简介二.BFS主要应用和实现三.典型例题(1)P1443马的遍历-洛谷(2)P8693[蓝桥杯2019国AC]大胖子走迷宫-洛谷四.总结一.BFS简介BFS(图论):广度优先搜索,是一种用于遍历或搜索树或图的算法。所谓广度优先,就是说按照圈层搜索。二.BFS主要应用和实现在搜索算法中,该BFS常常指利用队列实现广度优先搜索,从而寻找最短距离。与图论中的BFS算法有一定相似之处,但并不
- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
神经网络15044
仿真模型神经网络深度学习深度学习分类cnn算法网络集成学习数据挖掘
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法1.任务概述岩性分类是地质遥感的核心任务,旨在通过遥感影像识别地表岩石类型。本文使用ASTER(多光谱热辐射传感器)和Sentinel(多光谱成像卫星)数据,采用卷积神经网络(CNN)及CNN-集成学习(CNN-EL)方法实现高精度岩性分类。2.数据预处理2.1数据源说明ASTER数据:14个波段(VNIR/SWIR/TIR),分辨率
- 基础算法枚举,贪心
1.枚举穷举所有可能的解:算法枚举通过尝试所有可能的组合或排列来解决问题,确保不会错过任何潜在的解。并进行验证和比较,找到最优解。或者所有解。解空间的类型:可以是一个范围的所有数字(或二元组,字符串),或者满足某个条件的所有数字。蓝桥杯一题枚举问题小明对数位中含有2、0、1、9的数字很感兴趣(不包括前导0),在1到40中这样的数包括1、2、9、10至32、39和40,共28个,他们的和是574。请
- 【31天蓝桥杯冲刺!】蓝桥杯相关的 Python 细节(1) 字典中 get 函数的用法和注意事项
王十二er
蓝桥杯蓝桥杯python开发语言
文章目录1.描述1.1为什么要使用get()函数?2.语法3.用法3.1访问字典3.2统计列表中元素出现次数例题:力扣454.四数相加2码字不易,希望大家点赞支持一下1.描述Python字典(Dictionary)get()函数返回指定键的值。1.1为什么要使用get()函数?常规访问字典的方法是:dict[key],但是在key(键)不在字典中时,会触发KeyError异常。get(key)方法
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- 蒙特卡罗方法与深度学习的关系
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
蒙特卡罗方法与深度学习的关系作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来蒙特卡罗方法和深度学习都是近年来在计算科学和人工智能领域取得重大突破的技术。蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于物理、工程、金融等领域。深度学习则是一种基于人工神经网络的学习方法,在图像识别、语音识别、自然语言处理等领域取得了显
- 程序人生:技术人如何实现职业阶梯的跨越式发展
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据程序人生职场和发展ai
程序人生:技术人如何实现职业阶梯的跨越式发展关键词:职业发展、技术领导力、T型人才、职业规划、跨领域能力、持续学习、技术管理摘要:本文针对技术从业者的职业发展痛点,构建了系统化的职业阶梯跨越模型。通过解析技术人才成长的核心阶段与能力模型,结合数学量化评估体系和实战案例,提供从技术深耕到领导力跃迁的完整路径。内容涵盖能力矩阵构建、项目实战策略、跨领域知识融合、个人品牌经营等关键模块,帮助技术人突破职
- 给定一个长度为n的数列,将这个数列按从小到大的顺序排列。1<=n<=200 (蓝桥杯训练题库)c/c++
#includeinti,n,j,v;intsort(int*a,intn){for(i=0;ia[j]){v=a[i];a[i]=a[j];a[j]=v;}}intmain(){scanf("%d",&n);inta[200];for(i=0;i#includeusingnamespacestd;intmain(){intn;cin>>n;inta[200];for(inti=0;i>a[i];
- 提升学习能力(一)
如果决定要走又何必挽留
学习方法学习
前言:在学习一项技能在时候,通常会感到学了一遍,,没有任何的头绪,一直在通过做的时候通过来总结来去干,这样往往在学习的时候,不能事半功倍,在学习的时候也没有任何方法,毫无头绪,于是想写点关于提升学习能力的东西,刚才在前面的介绍说了,对于别人的教学没有任何头绪,下面的学习四步骤通过借鉴别人的学习经验,每个人的学习技巧,方法,都不一样,适合自己的才是做好的。一.学习方法1:兴趣法,有很多不感兴趣的东西
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 机器学习:集成学习方法之随机森林(Random Forest)
慕婉0307
机器学习集成学习机器学习随机森林
一、集成学习与随机森林概述1.1什么是集成学习集成学习(EnsembleLearning)是机器学习中一种强大的范式,它通过构建并结合多个基学习器(baselearner)来完成学习任务。集成学习的主要思想是"三个臭皮匠,顶个诸葛亮",即通过组合多个弱学习器来获得一个强学习器。集成学习方法主要分为两大类:Bagging(BootstrapAggregating):并行训练多个基学习器,然后通过投票
- 【学习】《算法图解》第十二章学习笔记:K近邻算法
程序员
前言《算法图解》第十二章介绍了一种简单而强大的机器学习算法——K近邻算法(K-NearestNeighbors,简称KNN)。这是一种基于实例的学习方法,也是机器学习领域中最基础、最直观的算法之一。本章不仅讲解了KNN的基本原理和实现方式,还探讨了特征提取、归一化等重要概念,为读者打开了机器学习的大门。本笔记将梳理KNN算法的核心思想、实现步骤以及应用场景。一、K近邻算法概述(一)基本思想K近邻算
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- 【蓝桥杯】第十五届省赛大学真题组真题解析
Jyywww121
蓝桥杯javascript职场和发展
【蓝桥杯】第十五届省赛大学真题组真题解析一、智能停车系统1、知识点(1)flex-wrap控制子元素的换行方式属性值有:no-wrap不换行wrap伸缩容器不够则自动往下换行wrap-reverse伸缩容器不够则自动往上换行(2)align-content调整多行侧轴对齐方式align-items调整单行侧轴对齐方式控制子元素在交叉轴上的对齐方式属性值有:flex-start侧轴的起始位置对齐fl
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla