【目标检测】IOU介绍

0.什么是IOU

IOU全称Intersection over Union,交并比。
IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用IoU来进行测量。
在目标识别中,我们的预测框与实际框的某种比值就是IOU

1.IOU的计算

这是IOU的计算方式,通过两个框交叉面积比上整体面积来计算。
【目标检测】IOU介绍_第1张图片

1.1基础IOU的缺点

  • 如果两个框没有相交,根据定义,IoU=0,不能反映两者的距离大小(重合度)。同时因为loss=0,没有梯度回传,无法进行学习训练。
  • IoU无法精确的反映两者的重合度大小。

1.2 基础IOU的优点

  • 可以说它可以反映预测检测框与真实检测框的检测效果。
  • 还有一个很好的特性就是尺度不变性,也就是对尺度不敏感(scale invariant), 在regression任务中,判断predict box和gt的距离最直接的指标就是IoU。(满足非负性;同一性;对称性;三角不等性)

2. GIOU

GIOU出自下面的论文:
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
对于任意的两个A、B框,首先找到一个能够包住它们的最小方框C。然后计算C \ (A ∪ B) 的面积与C的面积的比值,注:C \ (A ∪ B) 的面积为C的面积减去A∪B的面积。再用A、B的IoU值减去这个比值得到GIoU。
【目标检测】IOU介绍_第2张图片
【目标检测】IOU介绍_第3张图片

3 DIOU

DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。
在这里插入图片描述
其中 b b b b g t b^{gt} bgt , 分别代表了预测框和真实框的中心点,且 ρ \rho ρ代表的是计算两个中心点间的欧式距离。 c c c 代表的是能够同时包含预测框和真实框的最小闭包区域的对角线距离。

4 CIOU

论文考虑到bbox回归三要素中的长宽比还没被考虑到计算中,因此,进一步在DIoU的基础上提出了CIoU。其惩罚项如下面公式:
【目标检测】IOU介绍_第4张图片
v v v用来度量长宽比的相似性,定义为
在这里插入图片描述
完整的 CIoU 损失函数定义:
在这里插入图片描述

5 EIOU

CIOU Loss虽然考虑了边界框回归的重叠面积、中心点距离、纵横比。但是通过其公式中的v反映的纵横比的差异,而不是宽高分别与其置信度的真实差异,所以有时会阻碍模型有效的优化相似性。针对这一问题,有学者在CIOU的基础上将纵横比拆开,提出了EIOU Loss,并且加入Focal聚焦优质的锚框,该方法出自于2021年的一篇文章《Focal and Efficient IOU Loss for Accurate Bounding Box Regression》

6 WIOU

wiseIOU出自下面的论文
Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism
论文下载地址
文章的摘要:目标检测作为计算机视觉的核心问题,其检测性能依赖于损失函数的设计。边界框损失函数作为目标检测损失函数的重要组成部分,其良好的定义将为目标检测模型带来显著的性能提升。近年来的研究大多假设训练数据中的示例有较高的质量,致力于强化边界框损失的拟合能力。但我们注意到目标检测训练集中含有低质量示例,如果一味地强化边界框对低质量示例的回归,显然会危害模型检测性能的提升。Focal-EIoU v1 被提出以解决这个问题,但由于其聚焦机制是静态的,并未充分挖掘非单调聚焦机制的潜能。基于这个观点,我们提出了动态非单调的聚焦机制,设计了 Wise-IoU (WIoU)。动态非单调聚焦机制使用“离群度”替代 IoU 对锚框进行质量评估,并提供了明智的梯度增益分配策略。该策略在降低高质量锚框的竞争力的同时,也减小了低质量示例产生的有害梯度。这使得 WIoU 可以聚焦于普通质量的锚框,并提高检测器的整体性能。将WIoU应用于最先进的单级检测器 YOLOv7 时,在 MS-COCO 数据集上的 AP-75 从 53.03% 提升到 54.50%。
wise-Iou共分为3个版本,其中效果最好的是第三个版本.

3.5.1 wise-IOU v1

因为训练数据中难以避免地包含低质量示例,所以如距离、纵横比之类的几何度量都会加剧对低质量示例的惩罚从而使模型的泛化性能下降。好的损失函数应该在锚框与目标框较好地重合时削弱几何度量的惩罚,不过多地干预训练将使模型有更好的泛化能力。在此基础上,我们根据距离度量构建了距离注意力,得到了具有两层注意力机制的 WIoU v1:
【目标检测】IOU介绍_第5张图片

3.5.2 wise-IOU v2

【目标检测】IOU介绍_第6张图片

3.5.3 wise-IOU v3

定义离群度以描述锚框的质量,其定义为:
在这里插入图片描述
离群度小意味着锚框质量高,我们为其分配一个小的梯度增益,以便使边界框回归聚焦到普通质量的锚框上。对离群度较大的锚框分配较小的梯度增益,将有效防止低质量示例产生较大的有害梯度。我们利用 β \beta β 构造了一个非单调聚焦系数并将其应用于 WIoU v1:
在这里插入图片描述

【目标检测】IOU介绍_第7张图片

7 后面发现好的IOU的文章在进行更新

你可能感兴趣的:(深度学习,计算机视觉,目标检测,深度学习)