微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。
仓壁模式来源于船舱的设计:
船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。
当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:
流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。
什么是雪崩问题?
如何避免因瞬间高并发流量而导致服务故障?
如何避免因服务故障引起的雪崩问题?
可以认为:
限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。
超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。
在SpringCloud当中支持多种服务保护技术:
早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:
Sentinel | Hystrix | |
---|---|---|
隔离策略 | 信号量隔离 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于慢调用比例或异常比例 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 支持 | 支持 |
限流 | 基于 QPS,支持基于调用关系的限流 | 有限的支持 |
流量整形 | 支持慢启动、匀速排队模式 | 不支持 |
系统自适应保护 | 支持 | 不支持 |
控制台 | 开箱即用,可配置规则、查看秒级监控、机器发现等 | 不完善 |
常见框架的适配 | Servlet、Spring Cloud、Dubbo、gRPC 等 | Servlet、Spring Cloud Netflix |
Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html
Sentinel 具有以下特征:
丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
1)下载
sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。
2)运行
将jar包放到任意非中文目录,执行命令:
java -jar sentinel-dashboard-1.8.1.jar
如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:
配置项 | 默认值 | 说明 |
---|---|---|
server.port | 8080 | 服务端口 |
sentinel.dashboard.auth.username | sentinel | 默认用户名 |
sentinel.dashboard.auth.password | sentinel | 默认密码 |
例如,修改端口:
java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar
3)访问
访问http://localhost:8080页面,就可以看到sentinel的控制台了:
需要输入账号和密码,默认都是:sentinel
登录后,发现一片空白,什么都没有:
我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:
1)引入sentinel依赖
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
dependency>
2)配置控制台
修改application.yaml文件,添加下面内容:
server:
port: 8088
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080
3)访问order-service的任意端点
打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源。
默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以填写限流规则,如下:
其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。
2)利用jmeter测试
3)结果
可以看到,成功的请求每次只有5个
在添加限流规则时,点击高级选项,可以选择三种流控模式:
关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
配置规则:
语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。
使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。
需求说明:
在OrderController新建两个端点:/order/query和/order/update,无需实现业务
配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
1)定义/order/query端点,模拟订单查询
@GetMapping("/query")
public String queryOrder() {
return "查询订单成功";
}
2)定义/order/update端点,模拟订单更新
@GetMapping("/update")
public String updateOrder() {
return "更新订单成功";
}
重启服务,查看sentinel控制台的簇点链路:
3)配置流控规则
对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:
4)在Jmeter测试
可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5
查看http请求,请求的目标是/order/update,这样这个断点就会触发阈值。
但限流的目标是/order/query,我们在浏览器访问,可以发现确实被限流了。
5)总结
满足下面条件可以使用关联模式:
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
配置示例:
例如有两条请求链路:
/test1 --> /common
/test2 --> /common
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
实战案例
需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
步骤:
在OrderService中添加一个queryGoods方法,不用实现业务
在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
实现:
在order-service服务中,给OrderService类添加一个queryGoods方法:
public void queryGoods(){
System.err.println("查询商品");
}
在order-service的OrderController中,修改/order/query端点的业务逻辑:
@GetMapping("/query")
public String queryOrder() {
// 查询商品
orderService.queryGoods();
// 查询订单
System.out.println("查询订单");
return "查询订单成功";
}
在order-service的OrderController中,修改/order/save端点,模拟新增订单:
@GetMapping("/save")
public String saveOrder() {
// 查询商品
orderService.queryGoods();
// 查询订单
System.err.println("新增订单");
return "新增订单成功";
}
默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。
给OrderService的queryGoods方法添加@SentinelResource注解:
@SentinelResource("goods")
public void queryGoods(){
System.err.println("查询商品");
}
链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:
spring:
cloud:
sentinel:
web-context-unify: false # 关闭context整合
重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:
点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:
只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。
可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2
流控模式有哪些?
•直接:对当前资源限流
•关联:高优先级资源触发阈值,对低优先级资源限流。
•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流
在流控的高级选项中,还有一个流控效果选项:
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.
例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
案例
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒
QPS为10.
刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3,随着时间推移,成功比例越来越高:
当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。
而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
工作原理
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。
那什么叫做预期等待时长呢?
比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:
现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:
如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:
案例
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s
QPS为15,已经超过了我们设定的10。
如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。
但是我们看看队列模式的运行结果:全部都通过了。
再去sentinel查看实时监控的QPS曲线:
QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。
当队列满了以后,才会有部分请求失败:
流控效果有哪些?
快速失败:QPS超过阈值时,拒绝新的请求
warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。
访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:
当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。
代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5
刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.
而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:
如果参数值是100,则每1秒允许的QPS为10
如果参数值是101,则每1秒允许的QPS为15
案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:
•默认的热点参数规则是每1秒请求量不超过2
•给102这个参数设置例外:每1秒请求量不超过4
•给103这个参数设置例外:每1秒请求量不超过10
注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源
给order-service中的OrderController中的/order/{orderId}资源添加注解:
访问该接口,可以看到我们标记的hot资源出现了:
这里发起请求的QPS为5.
包含3个http请求:
普通参数,QPS阈值为2
限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。
而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。
熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。
可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。
而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
修改OrderService的application.yml文件,开启Feign的Sentinel功能:
feign:
sentinel:
enabled: true # 开启feign对sentinel的支持
业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。
给FeignClient编写失败后的降级逻辑
①方式一:FallbackClass,无法对远程调用的异常做处理
②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
这里我们演示方式二的失败降级处理。
步骤一:在feing-api项目中定义类,实现FallbackFactory
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
@Override
public UserClient create(Throwable throwable) {
return new UserClient() {
@Override
public User findById(Long id) {
log.error("查询用户异常", throwable);
return new User();
}
};
}
}
步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:
@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
return new UserClientFallbackFactory();
}
步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {
@GetMapping("/user/{id}")
User findById(@PathVariable("id") Long id);
}
重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:
Sentinel支持的雪崩解决方案:
Feign整合Sentinel的步骤:
线程隔离有两种方式实现:
线程池隔离
信号量隔离(Sentinel默认采用)
线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果
信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。
用法说明:
QPS:就是每秒的请求数,在快速入门中已经演示过
线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。
案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。
一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。
线程隔离的两种手段是?
信号量隔离
线程池隔离
信号量隔离的特点是?
线程池隔离的特点是?
熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。
断路器控制熔断和放行是通过状态机来完成的:
断路器熔断策略有三种:慢调用、异常比例、异常数
慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。
例如:
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
案例
需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5
修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:
下面,给feign接口设置降级规则:
超过50ms的请求都会被认为是慢请求
在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:
触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null
异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。
一个异常数设置:
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。
案例
需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:
也就是说,id 为 2时,就会触发异常
下面,给feign接口设置降级规则:
规则:
在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。
在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断
Sentinel熔断降级的策略有哪些?
慢调用比例:超过指定时长的调用为慢调用,统计单位时长内慢调用的比例,超过阈值则熔断
异常比例:统计单位时长内异常调用的比例,超过阈值则熔断
异常数:统计单位时长内异常调用的次数,超过阈值则熔断
授权规则可以对请求方来源做判断和控制。
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。
白名单:来源(origin)在白名单内的调用者允许访问
黑名单:来源(origin)在黑名单内的调用者不允许访问
点击左侧菜单的授权,可以看到授权规则:
资源名:就是受保护的资源,例如/order/{orderId}
流控应用:是来源者的名单,
比如:
我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)。
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
public interface RequestOriginParser {
/**
* 从请求request对象中获取origin,获取方式自定义
*/
String parseOrigin(HttpServletRequest request);
}
这个方法的作用就是从request对象中,获取请求者的origin值并返回。
默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。
因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin。
例如order-service服务中,我们定义一个RequestOriginParser的实现类:
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判断
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
我们会尝试从request-header中获取origin值。
既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头。
这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。
修改gateway服务中的application.yml,添加一个defaultFilter:
spring:
cloud:
gateway:
default-filters:
- AddRequestHeader=origin,gateway
routes:
# ...略
这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。
接下来,我们添加一个授权规则,放行origin值为gateway的请求。
配置如下:
现在,我们直接跳过网关,访问order-service服务:
通过网关访问:
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。
而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:
public interface BlockExceptionHandler {
/**
* 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
*/
void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}
这个方法有三个参数:
这里的BlockException包含多个不同的子类:
异常 | 说明 |
---|---|
FlowException | 限流异常 |
ParamFlowException | 热点参数限流的异常 |
DegradeException | 降级异常 |
AuthorityException | 授权规则异常 |
SystemBlockException | 系统规则异常 |
下面,我们就在order-service定义一个自定义异常处理类:
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;
if (e instanceof FlowException) {
msg = "请求被限流了";
} else if (e instanceof ParamFlowException) {
msg = "请求被热点参数限流";
} else if (e instanceof DegradeException) {
msg = "请求被降级了";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}
response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
}
}
重启测试,在不同场景下,会返回不同的异常消息.
限流:
现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。
规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
修改OrderService,让其监听Nacos中的sentinel规则配置。
具体步骤如下:
在order-service中引入sentinel监听nacos的依赖:
<dependency>
<groupId>com.alibaba.cspgroupId>
<artifactId>sentinel-datasource-nacosartifactId>
dependency>
在order-service中的application.yml文件配置nacos地址及监听的配置信息:
spring:
cloud:
sentinel:
datasource:
flow:
nacos:
server-addr: localhost:8848 # nacos地址
dataId: orderservice-flow-rules
groupId: SENTINEL_GROUP
rule-type: flow # 还可以是:degrade、authority、param-flow
SentinelDashboard默认不支持nacos的持久化,需要修改源码。
在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:
<dependency>
<groupId>com.alibaba.cspgroupId>
<artifactId>sentinel-datasource-nacosartifactId>
<scope>testscope>
dependency>
将sentinel-datasource-nacos依赖的scope去掉:
<dependency>
<groupId>com.alibaba.cspgroupId>
<artifactId>sentinel-datasource-nacosartifactId>
dependency>
在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。
然后,还需要修改测试代码中的NacosConfig类:
修改其中的nacos地址,让其读取application.properties中的配置:
在sentinel-dashboard的application.properties中添加nacos地址配置:
nacos.addr=localhost:8848
另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:
让我们添加的Nacos数据源生效:
接下来,还要修改前端页面,添加一个支持nacos的菜单。
修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件,将其中的这部分注释打开:
修改其中的文本:
运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:
启动方式跟官方一样:
java -jar sentinel-dashboard.jar
如果要修改nacos地址,需要添加参数:
java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar
本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
此时ACID难以满足,这是分布式事务要解决的问题
我们通过一个案例来演示分布式事务的问题:
1)创建数据库,名为seata_demo,然后导入SQL文件
2)新建一个微服务
其中:
seata-demo:父工程,负责管理项目依赖
3)启动nacos、所有微服务
4)测试下单功能,发出Post请求:
请求如下:
curl --location --request POST 'http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=20&money=200'
测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance (分区容错性)
它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
比如现在包含两个节点,其中的初始数据是一致的:
当我们修改其中一个节点的数据时,两者的数据产生了差异:
要想保住一致性,就必须实现node01 到 node02的数据 同步:
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
如图,有三个节点的集群,访问任何一个都可以及时得到响应:
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务
在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。
如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。
简述CAP定理内容?
思考:elasticsearch集群是CP还是AP?
BASE理论是对CAP的一种解决思路,包含三个思想:
而分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论:
AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
解决分布式事务,各个子系统之间必须能感知到彼此的事务状态,才能保证状态一致,因此需要一个事务协调者来协调每一个事务的参与者(子系统事务)。
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务
但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):
总结:
简述BASE理论三个思想:
解决分布式事务的思想和模型:
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。
Seata事务管理中有三个重要的角色:
TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。
TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。
RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
整体的架构如图:
Seata基于上述架构提供了四种不同的分布式事务解决方案:
无论哪种方案,都离不开TC,也就是事务的协调者。
首先我们要下载seata-server包,地址在https://seata.io/zh-cn/blog/download.html
修改conf目录下的registry.conf文件:
registry {
# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
type = "nacos"
nacos {
# seata tc 服务注册到 nacos的服务名称,可以自定义
application = "seata-tc-server"
serverAddr = "127.0.0.1:8848"
group = "DEFAULT_GROUP"
namespace = ""
cluster = "SH"
username = "nacos"
password = "nacos"
}
}
config {
# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
type = "nacos"
# 配置nacos地址等信息
nacos {
serverAddr = "127.0.0.1:8848"
namespace = ""
group = "SEATA_GROUP"
username = "nacos"
password = "nacos"
dataId = "seataServer.properties"
}
}
特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。
配置内容如下:
# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=123
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000
# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898
特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,你需要提前创建好这些表。
新建一个名为seata的数据库
这些表主要记录全局事务、分支事务、全局锁信息:
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- 分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table` (
`branch_id` bigint(20) NOT NULL,
`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`transaction_id` bigint(20) NULL DEFAULT NULL,
`resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`status` tinyint(4) NULL DEFAULT NULL,
`client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gmt_create` datetime(6) NULL DEFAULT NULL,
`gmt_modified` datetime(6) NULL DEFAULT NULL,
PRIMARY KEY (`branch_id`) USING BTREE,
INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
-- ----------------------------
-- 全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table` (
`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`transaction_id` bigint(20) NULL DEFAULT NULL,
`status` tinyint(4) NOT NULL,
`application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`timeout` int(11) NULL DEFAULT NULL,
`begin_time` bigint(20) NULL DEFAULT NULL,
`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gmt_create` datetime NULL DEFAULT NULL,
`gmt_modified` datetime NULL DEFAULT NULL,
PRIMARY KEY (`xid`) USING BTREE,
INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
SET FOREIGN_KEY_CHECKS = 1;
进入bin目录,运行其中的seata-server.bat即可:
启动成功后,seata-server应该已经注册到nacos注册中心了。
打开浏览器,访问nacos地址:http://localhost:8848,然后进入服务列表页面,可以看到seata-tc-server的信息:
首先,在order-service中引入依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-seataartifactId>
<exclusions>
<exclusion>
<artifactId>seata-spring-boot-starterartifactId>
<groupId>io.seatagroupId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>io.seatagroupId>
<artifactId>seata-spring-boot-starterartifactId>
<version>${seata.version}version>
dependency>
在order-service中的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 127.0.0.1:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-tc-server # seata服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组名称
service:
vgroup-mapping: # 事务组与cluster的映射关系
seata-demo: SH
微服务如何根据这些配置寻找TC的地址呢?
我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:
namespace为空,就是默认的public
结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
一阶段:
二阶段:
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
XA模式的优点是什么?
XA模式的缺点是什么?
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
1)修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:
data-source-proxy-mode: XA
2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法.
3)重启服务并测试
重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
阶段一RM的工作:
阶段二提交时RM的工作:
阶段二回滚时RM的工作:
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在又一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
一阶段:
1)TM发起并注册全局事务到TC
2)TM调用分支事务
3)分支事务准备执行业务SQL
4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。
{
"id": 1, "money": 100
}
5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
6)RM报告本地事务状态给TC
二阶段:
1)TM通知TC事务结束
2)TC检查分支事务状态
a)如果都成功,则立即删除快照
b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}
),将快照恢复到数据库。此时数据库再次恢复为100
简述AT模式与XA模式最大的区别是什么?
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
AT模式的优点:
AT模式的缺点:
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1)导入数据库表,记录全局锁
2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
3)重启服务并测试
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
Try:资源的检测和预留;
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
Cancel:预留资源释放,可以理解为try的反向操作。
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
初识余额:
余额充足,可以冻结:
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
需要回滚,那么就要释放冻结金额,恢复可用金额:
Seata中的TCC模型依然延续之前的事务架构,如图:
TCC模式的每个阶段是做什么的?
TCC的优点是什么?
TCC的缺点是什么?
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
如图:
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?
这里我们定义一张表:
CREATE TABLE `account_freeze_tbl` (
`xid` varchar(128) NOT NULL,
`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
其中:
那此时,我们的业务开怎么做呢?
接下来,我们改造account-service,利用TCC实现余额扣减功能。
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.angyan.account.service
包中新建一个接口,声明TCC三个接口:
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
在account-service服务中的cn.angyan.account.service.impl
包下新建一个类,实现TCC业务:
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
Saga也分为两个阶段:
优点:
缺点:
我们从以下几个方面来对比四种实现:
如图:
搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。
比如一个TC集群在上海,另一个TC集群在杭州:
微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。
计划启动两台seata的tc服务节点:
节点名称 | ip地址 | 端口号 | 集群名称 |
---|---|---|---|
seata | 127.0.0.1 | 8091 | SH |
seata2 | 127.0.0.1 | 8092 | HZ |
之前我们已经启动了一台seata服务,端口是8091,集群名为SH。
现在,将seata目录复制一份,起名为seata2
修改seata2/conf/registry.conf内容如下:
registry {
# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
type = "nacos"
nacos {
# seata tc 服务注册到 nacos的服务名称,可以自定义
application = "seata-tc-server"
serverAddr = "127.0.0.1:8848"
group = "DEFAULT_GROUP"
namespace = ""
cluster = "HZ"
username = "nacos"
password = "nacos"
}
}
config {
# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
type = "nacos"
# 配置nacos地址等信息
nacos {
serverAddr = "127.0.0.1:8848"
namespace = ""
group = "SEATA_GROUP"
username = "nacos"
password = "nacos"
dataId = "seataServer.properties"
}
}
进入seata2/bin目录,然后运行命令:
seata-server.bat -p 8092
接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。
# 事务组映射关系
service.vgroupMapping.seata-demo=SH
service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000
# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100
接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:
seata:
config:
type: nacos
nacos:
server-addr: 127.0.0.1:8848
username: nacos
password: nacos
group: SEATA_GROUP
data-id: client.properties
重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。