【自制框架,第二步_01】

第一步

类的定义

import numpy as np


def as_array(x):
    if np.isscalar(x):
        return np.array(x)
    return x


class Variable:
    def __init__(self, data):
        self.data = data
        self.grad = None  # 定义梯度
        self.creator = None  # 定义创建者
        self.generation = 0  # 设置 Variable 变量的 generation,用来确定优先级

    # 设置创建变量的函数,函数是变量的创建者
    def set_creator(self, func):
        self.creator = func
        self.generation = func.generation + 1  # 设置 Variable 变量的 generation为父函数 + 1

    def backward_old(self):
        f = self.creator  # 获取到函数
        if f is not None:  # 如果函数是None,说明变量是用户输入变量
            x = f.input  # 获取到函数的输入
            x.grad = f.backward(self.grad)  # 通过函数和当前变量计算前一个变量的梯度
            x.backward()  # 递归调用前一个变量的梯度

    # 递归修改为循环
    def backward(self):

        # 为了省去 y.grad = np.array(1.0), 引入如下的代码
        if self.grad is None:
            self.grad = np.ones_like(self.data)

        funcs = []
        seen_set = set()

        def add_func(f):
            if f not in seen_set:
                funcs.append(f)
                seen_set.add(f)
                funcs.sort(key=lambda k: k.generation)  # 每次调用add_func,都会对funcs排序

        add_func(self.creator)

        while funcs:
            f = funcs.pop()
            gys = [output.grad for output in f.outputs]  # 将输出变量outputs的导数保存在集合gys中
            gxs = f.backward(*gys)  # 调用反向传播,解包gys, 将gys参数列表作为传参进行反向传播计算
            if not isinstance(gxs, tuple):  # 如果 gxs 不是tuple,转换为tuple
                gxs = (gxs,)

            # inputs 和 gxs 一一对应
            for x, gx in zip(f.inputs, gxs):
                # x.grad = gx  # 将计算得到的导数gxs,赋值给输入变量的属性值grad, 不过本行代码有问题,变量重复使用
                if x.grad is None:
                    x.grad = gx
                else:
                    x.grad = x.grad + gx
                    # x.grad += gx,  # 上面的代码可以,这句代码不行,不理解

                if x.creator is not None:
                    add_func(x.creator)

    # 清空梯度,变量进行重复计算时,需要清空梯度
    def clean_grad(self):
        self.grad = None


class Function:
    def __call__(self, *inputs):
        xs = [x.data for x in inputs]
        ys = self.forward(*xs)  # 参数上加上*,表示将参数解包,即将列表展开作为参数传递
        if not isinstance(ys, tuple):
            ys = (ys,)
        outputs = [Variable(as_array(y)) for y in ys]
        # 去输入变量的generation最大值
        self.generation = max([x.generation for x in inputs])
        for output in outputs:
            output.set_creator(self)
        self.inputs = inputs
        self.outputs = outputs
        return outputs if len(outputs) > 1 else outputs[0]

    def forward(self, *x):
        raise NotImplementedError

    def backward(self, gy):
        raise NotImplementedError


class SquareFunction(Function):

    def forward(self, *x):
        y = x[0] ** 2
        return y

    def backward(self, gy):
        x = self.inputs[0].data
        gx = 2 * x * gy
        return gx


class ExpFunction(Function):

    def forward(self, x):
        return np.exp(x)

    def backward(self, gy):
        x = self.inputs[0].data
        gx = np.exp(x) * gy
        return gx


class AddFunction(Function):
    def forward(self, x0, x1):
        y = x0 + x1
        return y

    def backward(self, gy):
        return gy, gy


测试

import unittest

import numpy as np

from step_02.step02 import *


def add(x0, x1):
    return AddFunction()(x0, x1)


def square(x):
    return SquareFunction()(x)


class MyTestCase(unittest.TestCase):
    def test_something(self):
        self.assertEqual(True, False)  # add assertion here

    def test_add(self):
        xs = [Variable(np.array(2)), Variable(np.array(3))]
        f = AddFunction()
        ys = f(xs)
        y = ys[0]
        self.assertEqual(y.data, 5)

    def test_add02(self):
        x0 = Variable(np.array(2))
        x1 = Variable(np.array(3))
        f = AddFunction()
        y = f(x0, x1)
        self.assertEqual(y.data, 5)

    def test_add03(self):
        x0 = Variable(np.array(2))
        x1 = Variable(np.array(3))
        y = add(x0, x1)
        self.assertEqual(y.data, 5)

    def test_add04(self):
        x0 = Variable(np.array(2))
        x1 = Variable(np.array(3))
        y = add(square(x0), square(x1))
        y.backward()
        self.assertEqual(x0.grad, 4)
        self.assertEqual(x1.grad, 6)
        self.assertEqual(y.data, 13)

    def test_add05(self):
        x0 = Variable(np.array(2))
        y = add(add(x0, x0), x0)
        y.backward()
        self.assertEqual(y.data, 6)
        self.assertEqual(x0.grad, 3)

    # 测试清空梯度
    def test_add06(self):
        x0 = Variable(np.array(2))
        y1 = add(add(x0, x0), x0)
        y1.backward()
        self.assertEqual(y1.data, 6)
        self.assertEqual(x0.grad, 3)

        x0.clean_grad()  # 加上这句话,最后一句才正确
        y2 = add(x0, x0)
        y2.backward()
        self.assertEqual(y2.data, 4)
        self.assertEqual(x0.grad, 2)  # 2 != 5 这句报错,需要清空梯度

    # 测试generation
    def test_add08(self):
        x = Variable(np.array(2))
        a = square(x)
        y = add(square(a), square(a))
        y.backward()
        self.assertEqual(y.data, 32)
        self.assertEqual(x.grad, 64)



if __name__ == '__main__':
    unittest.main()


你可能感兴趣的:(算法,python,开发语言)