果蔬识别系统Python+Django+TensorFlow+卷积神经网络算法

一、介绍

果蔬识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

二、效果展示

果蔬识别系统Python+Django+TensorFlow+卷积神经网络算法_第1张图片

果蔬识别系统Python+Django+TensorFlow+卷积神经网络算法_第2张图片

果蔬识别系统Python+Django+TensorFlow+卷积神经网络算法_第3张图片

三、演示视频+代码

视频+代码:https://www.yuque.com/ziwu/yygu3z/pnrng41h0sg5f5tf

四、Django

Django是一个基于Python的免费开源的web框架,它旨在帮助开发者快速开发复杂的、数据库驱动的网站,同时强调框架的可重用性和“不要重复自己”的原则。下面是一些Django的关键特点:

  1. 完全载入:Django包含了你需要构建一个web应用的几乎所有内容,包括认证系统、数据库迁移支持、ORM、模板引擎等。
  2. 模块化和可重用:Django采用了一个模块化的设计,这使得各个部分可以很容易地进行重用。这包括你自己的应用,还有像用户系统这样的内置应用。
  3. 明确的设计模式:Django遵循了MVC(模型-视图-控制器)设计模式,它在Django中被称为MTV(模型-模板-视图)模式。
  4. 自动管理后台:Django可以根据你的模型自动生成一个功能强大的后台管理界面,方便对数据进行管理。
  5. 安全:Django内置了多项防范网络攻击的安全功能,如跨站请求伪造(CSRF)防护,跨站脚本(XSS)防护,SQL注入防护等。

下面是一个简单的Django应用示例代码,代码主要包含模型(models.py),视图(views.py)和网址配置(urls.py)。

假设你正在创建一个简单的博客应用,首先定义模型:

# model.py
from django.db import models

class Blog(models.Model):
    title = models.CharField(max_length=200)
    content = models.TextField()
    pub_date = models.DateTimeField('date published')

    def __str__(self):
        return self.title

然后定义视图:

# views.py

from django.shortcuts import render
from .models import Blog

def blog_list(request):
    blogs = Blog.objects.all()
    return render(request, 'blog_list.html', {'blogs': blogs})

def blog_detail(request, blog_id):
    blog = Blog.objects.get(id=blog_id)
    return render(request, 'blog_detail.html', {'blog': blog})

最后,定义URL配置:

# urls.py
from django.urls import path
from . import views

urlpatterns = [
    path('', views.blog_list, name='blog_list'),
    path('/', views.blog_detail, name='blog_detail'),
]

这个例子非常简单,但它展示了Django的基本使用方法:定义模型,创建视图,并通过URL配置将视图与模型关联起来。

然而,Django的功能远不止这些,它还有许多强大的功能,如中间件支持、模板标签和过滤器、表单、泛型视图、测试工具等。学习和熟练使用

在本项目中,就通过使用Django作为网页端开发框架,实现一个WEB界面的开发

五、实现步骤

  • 首先收集需要识别的种类数据集
  • 然后基于TensorFlow搭建ResNet50卷积神经网络算法模型,并通过多轮迭代训练,最终得到一个精度较高的模型,并将其保存为h5格式的本地文件。
  • 基于Django开发网页端可视化操作平台,HTML、CSS、BootStrap等技术搭建前端界面。Django作为后端逻辑处理框架。Ajax实现前后端的数据通信。

你可能感兴趣的:(python,django,tensorflow,卷积神经网络)