目录:
题目链接:
https://leetcode.cn/problems/sliding-window-maximum/
https://leetcode.cn/problems/top-k-frequent-elements/
给你一个整数数组 nums
,有一个大小为 k
**的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 73
1 [3 -1 -3] 5 3 6 73
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 75
1 3 -1 -3 [5 3 6] 76
1 3 -1 -3 5 [3 6 7]7
思考:这题考察队列。将滑动窗口想象成一个队列从左到右滑动,可以将最大值固定存放在队列尾位置,也可以用一个变量存放。由于没写过队列相关题,直接看视频(原思考错误,是要输出每个窗口k的最大值)
随想录:自己实现一个队列,将最大值放在出队口。其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
设计单调队列的时候,pop,和push操作要保持如下规则:
代码:
class Solution {
private:
class MyQueue { //单调队列(从大到小)
public:
deque<int> que; // 使用deque来实现单调队列
// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
// 同时pop之前判断队列当前是否为空。
void pop(int value) {
if (!que.empty() && value == que.front()) {
que.pop_front();
}
}
// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
// 这样就保持了队列里的数值是单调从大到小的了。
void push(int value) {
while (!que.empty() && value > que.back()) {
que.pop_back();
}
que.push_back(value);
}
// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
int front() {
return que.front();
}
};
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
vector<int> result;
for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
que.push(nums[i]);
}
result.push_back(que.front()); // result 记录前k的元素的最大值
for (int i = k; i < nums.size(); i++) {
que.pop(nums[i - k]); // 滑动窗口移除最前面元素
que.push(nums[i]); // 滑动窗口前加入最后面的元素
result.push_back(que.front()); // 记录对应的最大值
}
return result;
}
};
整体思路是自定义了一个队列,然后将其设置为单调递增。每次弹出的时候,弹出最前面的最大值。
压入的时候,如果压入的值比后面的值要大,则一直弹出后面的值,再压入值。每一次滑动的时候,将最大值存入result。
给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入:nums = [1,1,1,2,2,3], k = 2
输出:[1,2]
思考:可以用哈希表里面的map,记录每个数字出现的次数。之后再排个序。
随想录:
这道题目主要涉及到如下三块内容:
统计元素出现的频率,可以用map统计。对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列(其实就是一个披着队列外衣的堆)。堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。
用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q72udXlt-1686148276970)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/162c480c-854b-4663-96c1-fedacdceed55/Untitled.png)]
代码
class Solution {
public:
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
// 要统计元素出现频率
unordered_map<int, int> map; // map
for (int i = 0; i < nums.size(); i++) {
map[nums[i]]++;
}
// 对频率排序
// 定义一个小顶堆,大小为k
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
// 用固定大小为k的小顶堆,扫面所有频率的数值
for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
pri_que.push(*it);
if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
pri_que.pop();
}
}
// 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
vector<int> result(k);
for (int i = k - 1; i >= 0; i--) {
result[i] = pri_que.top().first;
pri_que.pop();
}
return result;
}
};
这道题考察数据结构比较多。
****c++的priority_queue各种使用方法:****https://blog.csdn.net/sexyluna/article/details/125901499
数据结构和C++某些用法不太熟
栈和队列的更进一步用法。