- 编译原理第五章——自下而上分析——LR(1)超详细分析!
爱吃芝麻汤圆
#编译原理汇编
本文中内容整理西安交通大学软件学院吴晓军老师的ppt中,仅供学习使用,请勿转载或他用参考教材:《程序设计语言编译原理》(第3版)陈火旺等国防工业出版社编译原理第五章——自下而上分析目录一、复习:语法分析的两种方式二、自下而上分析概述1.核心思想:移进-规约2.规范规约3.规范规约的两个问题三、算符优先分析1.概念辨析-算符文法、算符优先文法2.概念辨析-算符优先分析法、直观算符优先分析法3.概念辨
- Android音视频开发实战系列教程
Stark T
android音视频
Android音视频开发实战系列教程指南在这篇文章中,我们将通过一个逐步流程,帮助刚入行的小白学习如何进行Android音视频开发。本教程会展示实施的步骤、所需的代码示例及其注释,最后还包括旅行图和类图来进一步帮助理解。开发流程我们可以将音视频开发的整个流程分为以下几个步骤。请看下表:步骤描述1.环境搭建安装所需的软件和开发工具2.项目创建创建Android项目并导入其他依赖库3.引入音视频SDK
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 一、C#上位机语法篇学习笔记
飞翔的老宫本
C#上位机c#visualstudiowindows笔记学习
0、基础中的基础Write和WriteLine方法对比#region1Write和WriteLine方法对比staticvoidTest1()//方法{stringemal1="915992026@qq.com";stringuserName=emal1.Substring(0,7);Console.WriteLine(userName);//输出后换行stringuserName1=emal1.
- 使用OpenAI的API构建聊天机器人
dgay_hua
机器人python
技术背景介绍聊天机器人是近年来热门的AI应用之一,无论是客服系统、智能助手还是社交娱乐,都可以看到其身影。构建一个高效的聊天机器人,离不开强大的自然语言处理模型。OpenAI提供的API为开发者简化了这一过程,本文将介绍如何使用OpenAI的API服务构建一个基本的聊天机器人。核心原理解析聊天机器人主要依赖于生成式预训练模型(GPT),它通过大量文本数据训练,学习语言模式和上下文关联,从而能够生成
- 【个人学习日志-前端】浏览器窗口大小改变后,超出视窗部分的导航栏div标签背景色丢失问题
雲海夢
学习csshtmlvscode前端
项目场景:复刻小米商城前端html。问题描述浏览器窗口宽度改变后,导航栏div标签超出视图的部分背景色丢失。问题如图:原因分析:导航栏的宽度是基于其子元素的宽度计算的,当窗口宽度较小时,子元素可能会换行或超出视窗,导致背景色无法覆盖整个导航栏。如果导航栏的布局没有正确处理响应式设计,当窗口宽度较小时,布局可能会塌陷,导致背景色丢失。min-width属性用于设置元素的最小宽度,确保元素在窗口宽度较
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- Meta AI 最近推出了一款全新的机器学习框架ParetoQ,专门用于大型语言模型的4-bit 以下量化
新加坡内哥谈技术
人工智能语言模型自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/MetaAI最近推出了一款全新的机器学习框架——ParetoQ,专门用于大型语言模型的4
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- python票务系统_python基础学习:模拟火车订票系统
一愫
python票务系统
2020-12-20str1=["车次","出发站-到达站","出发时间","到达时间","历时"]train_numbers=["T40","T298","Z158"]train_place=["长春-北京","哈尔滨-北京","青岛-北京"]train_outTime=["00:12","00:06","12:48"]train_arriveTime=["12:20","10:50","21:
- Andrej Karpathy:计算范式的变革者
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《AndrejKarpathy:计算范式的变革者》概述本文旨在全面探讨AndrejKarpathy在计算范式变革中的角色和贡献。AndrejKarpathy是一位世界级的人工智能专家,程序员,软件架构师,CTO,同时也是计算机图灵奖获得者,计算机编程和人工智能领域大师。他以其深刻的技术见解,对深度学习和自然语言处理领域的贡献,以及对计算范式的革新性思考,成为了当今技术领域的引领者之一。本文分为六个
- 人生的转折点反而迷失了方向
苏木樨
笔记
就像我老婆说的,我是抽空结了一个婚。今天是上班的第三天,不知道是出于何种原因,自己反而陷入了深深的困境,没有了斗志,原因也找不出来,白天在公司没有很大量的产出,晚上回去是想学一学,或者看看书;也静不下心来,变得浮躁,眼高手低,看上去有很多路子,但实际上又感觉无路可走;静下心来坐在电脑面前安心学习的日子一去不复返。流逝的是时间,浪费的是我为数不多的生命。经典一问,我该何去何从?创业,我做什么呢?我该
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- 【LeetCode 刷题】单调栈(1)-下一更大元素
Bran_Liu
LeetCodeleetcode算法职场和发展python
此博客为《代码随想录》单调栈章节的学习笔记,主要内容为单调栈下一更大元素问题的相关题目解析。文章目录739.每日温度496.下一个更大元素I503.下一个更大元素II739.每日温度题目链接classSolution:defdailyTemperatures(self,temperatures:List[int])->List[int]:n=len(temperatures)res=[0]*nst
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- linux学习第六十篇:Linux监控平台介绍,zabbix监控介绍,安装zabbix,忘记Admin密码如何做_adminstartor密码
2501_90339150
linux学习zabbix
Linux监控平台介绍常见开源监控软件:cacti、nagios、zabbix、smokeping、open-falcon等等cacti、smokeping偏向于基础监控,成图非常漂亮cacti、nagios、zabbix服务端监控中心,需要php环境支持,其中zabbix和cacti都需要mysql作为数据存储,nagios不用存储历史数据,注重服务或者监控项的状态,zabbix会获取服务或者监
- 人工智能之自然语言处理技术演进
香橙薄荷心
AI人工智能自然语言处理
自然语言处理技术演进自然语言处理(NaturalLanguageProcessing,NLP)是人工智能的重要分支,旨在使计算机能够理解、生成和处理人类语言。近年来,NLP技术经历了从规则驱动到数据驱动的革命性演进,尤其是在深度学习和大规模预训练模型的推动下,取得了显著突破。本文将深入探讨NLP技术的演进历程、核心模型及其应用,并通过具体案例和代码示例帮助读者理解其实际应用。1.NLP技术演进历程
- 网络安全(黑客)——自学2025
网安大师兄
web安全安全网络网络安全密码学
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习
- 分发饼干(力扣455)
qy发大财
leetcode算法职场和发展
从这道题开始我们就进入贪心算法的学习了。这个算法没有固定的套路,甚至题目之间的联系也很少,基本上每一道题都要当新题来写。我们能做的只有见多识广,这样才有机会在考试中根据以往经验解决贪心的题目。贪心的本质上就是找到局部最优解,最终的答案就是全局最优解。这道题要求尽可能分到更多的小孩,那么所谓的贪心究竟贪在什么地方呢?我们可以先将胃口和饼干的数组进行从小到大的排序,让小胃口的小孩吃到尽可能小的饼干,只
- 利用gensim生成词袋模型(基于频次和基于TF-IDF)
weixin_50291342
文本表示自然语言处理python机器学习
前言参考文献:胡盼盼编著.自然语言处理从入门到实战[M].中国铁道出版社,2020.最近在学习文本表示的一种最简单方式——词袋模型,书中给出了使用gensim生成词袋模型的代码,原代码就来自于这本书,我加了一些注释,方便理解代码。一、引入库fromgensim.modelsimportTfidfModelfromgensim.corporaimportDictionaryimportjieba二、
- 2019 - Web开发技术指南和趋势
编程鸭
互联网JavaScript编程语言前端前端IT编程程序员
这是一个2019年你成为前端,后端或全栈开发者的进阶指南:你不需要学习所有的技术成为一个web开发者这个指南只是通过简单分类列出了技术选项我将从我的经验和参考中给出建议首选我们会介绍通用的知识,最后介绍2019年的Web的一些趋势1.基础前端开发者1.1HTML&CSSHTML&CSS最基础的知识:语义化的HTML元素基础的CSS语法Flexbox&GridCSS变量浏览器开发者工具1.2响应式布
- RAG中的双编码器与跨编码器模型
人工智能
RAG中的双编码器与跨编码器模型阅读时长:19分钟发布时间:2025-02-13近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】检索增强生成(RAG)是一个强大的框架,它结合了基于检索和基于生成的自然语言处理(NLP)任务方法。RAG不只是依赖生成模型,而是通过检索相关文档或段落来利用外
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- R 语言 必备 十大资源
后端
引言R是进行统计计算和数据分析的热门编程语言之一,广泛应用于数据科学家、研究者和统计学家之间,用于处理大数据、执行复杂分析和结果可视化。如果你是R的新手或希望提升你的R技能,这里有一些核心资源可以助你一臂之力,无论是从基础学起还是提高现有水平,包括官方站点、知名学府和互动式学习平台。1.R项目官网(r-project.org)R项目的官方网站是开启R学习之旅的首选,它提供免费的R软件、文档、教程和
- 零基础入门机器学习 -- 第三章第一个机器学习模型——线性回归
山海青风
#机器学习人工智能机器学习回归线性回归python
3.1线性回归的概念在现实生活中,许多事情都遵循某种线性关系,比如:房价vs面积:房子的面积越大,价格通常越高。工资vs工作经验:工作经验越多,薪资往往更高。汽车油耗vs车速:在一定范围内,车速越快,油耗可能越高。线性回归(LinearRegression)是机器学习中最基础的算法之一,它用于研究两个变量之间的线性关系,即一个变量(自变量)如何影响另一个变量(因变量)。3.2线性回归的数学直觉线性
- 零基础入门机器学习 -- 第二章机器学习的基本流程
山海青风
#机器学习机器学习python人工智能
1.机器学习的五个基本步骤在机器学习项目中,我们通常遵循以下步骤:收集数据:获取数据集,例如从文件、数据库或在线资源。清洗和预处理数据:处理缺失值、去除异常数据、转换数据格式等。选择合适的模型:不同任务适合不同模型,如分类使用逻辑回归、决策树等。训练模型:让模型从数据中学习模式并调整参数。评估模型:检查模型的准确率,以判断效果是否良好。本章会通过电影评分预测的示例,帮助你快速体验从数据到模型的基本
- 深度学习-108-大语言模型LLM之基于langchain的结构化输出功能提取结构化信息
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1langchain的结构化输出1.1推荐的使用流程1.2模式定义1.3返回结构化输出1.3.1工具调用(方式一)1.3.2JSON模式(方式二)1.3.3结构化输出法(方式三)2提取结构化信息2.1定义数据模型2.2配置提示模板2.3设置执行链3参考附录1langchain的结构化输出对于许多应用程序,例如聊天机器人,模型需要直接用自然语言响应用户。然而,在某些情况下,我们需要模型以结构
- 数学到底在哪里支撑着编程
数学
在编程的世界里,数学并非只是一个学科,它实际上是支撑整个编程基础的支柱之一。数学不仅为编程提供了理论框架,它的各种理论和方法被用来提升代码效率、优化算法、设计系统架构、分析数据、以及确保程序的正确性。编程中的很多技术,从数据结构的选择到算法的设计、从性能优化到人工智能的构建,都离不开数学的支撑。在这篇文章中,我们将从多个方面深入探讨数学如何在编程中发挥作用,包括算法设计、数据结构优化、机器学习、图
- 真正通俗易懂的Langchain入门学习(六)
caridle
智能体langchain学习
五、下一步行动:从学习者到创造者的跃迁1.启动你的第一个项目(3天实践计划)行动指南:graphTDA[第1天:选择方向]-->B{{三选一}}B-->C[客服助手]B-->D[论文分析]B-->E[数据助手]C/D/E-->F[第2天:搭建基础]F-->G[第3天:添加特色功能]具体任务:基础版必做:运行课堂示例代码替换为自己的数据(如上传公司产品手册/个人学习笔记)特色功能选装:给客服助手添加
- 真正通俗易懂的Langchain入门学习(四)
caridle
智能体langchain学习
三、核心模块深入:像搭积木一样组装AI能力1.Models(模型层):给你的AI换个“大脑”场景需求:需要更高精度的回答?→换GPT-4数据敏感必须本地部署?→用开源模型想节省成本?→选择按量付费的模型实操演示:#使用OpenAI的GPT-4(需账户有访问权限)fromlangchain.chat_modelsimportChatOpenAIgpt4=ChatOpenAI(model="gpt-4
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">