跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了...

梦晨 发自 凹非寺
量子位 | 公众号 QbitAI

自动测试分数达到ChatGPT的99.3%人类难以分辨两者的回答……

这是开源大模型最新成果,来自羊驼家族的又一重磅成员——华盛顿大学原驼(Guanaco)。

更关键的是,与原驼一起提出的新方法QLoRA把微调大模型的显存需求从>780GB降低到<48GB

开源社区直接开始狂欢,相关论文成为24小时内关注度最高的AI论文。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第1张图片

以Meta的美洲驼LLaMA为基础,得到原驼650亿参数版只需要48GB显存单卡微调24小时330亿参数版只需要24GB显存单卡微调12小时

24GB显存,也就是一块消费级RTX3090或RTX4090显卡足以。

不少网友在测试后也表示,更喜欢它而不是ChatGPT。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第2张图片

英伟达科学家Jim Fan博士对此评价为:大模型小型化的又一里程碑。

先扩大规模再缩小,将成为开源AI社区的节奏。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第3张图片

而新的高效微调方法QLoRA迅速被开源社区接受,HuggingFace也在第一时间整合上线了相关代码。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第4张图片

GPT-4做裁判,原驼得分达到ChatGPT的99.3%

论文中,团队对原驼总共做了三项测试,自动评估、随机匹配和人类评估。

测试数据来自小羊驼Vicuna和Open Assistant。

自动评估由大模型天花板GPT-4当裁判,对不同模型的回答进行打分,以ChatGPT(GPT3.5)的成绩作为100%。

最终原驼650亿版得分达到ChatGPT的99.3%,而GPT-4自己的得分是114.5%,谷歌Bard是94.8%。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第5张图片

随机匹配,采用棋类专业比赛和电子竞技同款的Elo记分机制,由GPT-4和人类共同做裁判。

原驼650亿和330亿版最终得分超过ChatGPT(GPT3.5)。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第6张图片

人类评估,则是把原驼650亿版的回答和ChatGPT的回答匿名乱序放在一起,人类来盲选哪个最好。

论文共同一作表示,研究团队里的人都很难分辨出来,并把测试做成了一个小游戏放在Colab上,开放给大家挑战。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第7张图片

这里节选其中一个问题(附中文翻译),你能分辨出哪个是ChatGPT回答的吗?

问题:How can I improve my time management skills?(如何提高时间管理技能?)

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第8张图片

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第9张图片

(完整测试地址在文末)

总的来说,原驼的优势在于不容易被问题中的错误信息误导,比如能指出地球从来没有被科学界认为是平的。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第10张图片

以及擅长心智理论(Theory of Mind),也就是能推测理解他人的心理状态

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第11张图片

但原驼也并非没有弱点,团队发发现它不太擅长数学,以及容易用提示注入攻击把要求保密的信息从它嘴里套出来。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第12张图片

也有网友表示,虽然一个模型能在某个数据集上无限接近ChatGPT,但像ChatGPT那样通用还是很难的。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第13张图片

全新方法QLoRA,iPhone都能微调大模型了

原驼论文的核心贡献是提出新的微调方法QLoRA

其中Q代表量化(Quantization),用低精度数据类型去逼近神经网络中的高精度浮点数,以提高运算效率。

LoRA是微软团队在2021年提出的低秩适应(Low-Rank Adaptation)高效微调方法,LoRA后来被移植到AI绘画领域更被大众熟知,但最早其实就是用于大语言模型的。

通常来说,LoRA微调与全量微调相比效果会更差,但团队将LoRA添加到所有的线性层解决了这个问题。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第14张图片

具体来说,QLoRA结合了4-bit量化和LoRA,以及团队新创的三个技巧:新数据类型4-bit NormalFloat分页优化器(Paged Optimizers)和双重量化(Double Quantization)。

最终QLoRA让4-bit的原驼在所有场景和规模的测试中匹配16-bit的性能

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第15张图片

QLoRA的高效率,让团队在华盛顿大学的小型GPU集群上每天可以微调LLaMA 100多次……

最终使用Open Assistant数据集微调的版本性能胜出,成为原驼大模型。

Open Assistant数据集来自非盈利研究组织LAION(训练Stable Diffusion的数据集也来自这里),虽然只有9000个样本但质量很高,经过开源社区的人工仔细验证。

这9000条样本用于微调大模型,比100万条指令微调(Instruction Finetune)样本的谷歌FLAN v2效果还好。

研究团队也据此提出两个关键结论:

  • 数据质量 >> 数据数量

  • 指令微调有利于推理,但不利于聊天

最后,QLoRA的高效率,还意味着可以用在手机上,论文共同一作Tim Dettmers估计以iPhone 12 Plus的算力每个晚上能微调300万个单词的数据量。

这意味着,很快手机上的每个App都能用上专用大模型。

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第16张图片

论文:
https://arxiv.org/abs/2305.14314

GitHub:
https://github.com/artidoro/qlora

与ChatGPT对比测试:
https://colab.research.google.com/drive/1kK6xasHiav9nhiRUJjPMZb4fAED4qRHb

330亿参数版在线试玩:
https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi

参考链接:
[1]https://twitter.com/Tim_Dettmers/status/1661379376225697794
[2]https://huggingface.co/blog/4bit-transformers-bitsandbytes

「AIGC行业社群」招募中!

欢迎关注AIGC的伙伴们加入AIGC行业社群,一起学习、探索、创新AIGC!

加好友请备注「AIGC」&「姓名-公司-职位」噢 ~

跑分达ChatGPT的99%,人类难以分辨!开源「原驼」爆火,iPhone都能微调大模型了..._第17张图片

点这里关注我,记得标星哦~

你可能感兴趣的:(chatgpt)