上一篇文章我们学习了C++中string类的使用和模拟实现,string是一种表示字符串的字符串类今天我们来继续学习C++中的另一种容器:vector。
1.vector是表示可变大小数组的序列容器。
2.就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
3.本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
4.vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5.因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
6.与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。
函数名称 | 功能说明 |
---|---|
vector() | 无参构造 |
vector(size_type n, const value_type& val = value_type()) | 构造并初始化n个val |
vector (const vector& x) | 拷贝构造 |
vector (InputIterator first, InputIterator last) | 使用迭代器进行初始化构造 |
void Test1()
{
vector<int> v1;
vector<int> v2(10, 1);
vector<int> v3(v2);
}
函数名称 | 功能说明 |
---|---|
begin+end | 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator |
rbegin+rend | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator |
void Test1()
{
vector<int> v1;
vector<int> v2(10, 1);
vector<int> v3(v2);
//迭代器
vector<int>::iterator it = v2.begin();
while (it != v2.end())
{
(*it)++;
cout << *it << ' ';
it++;
}
cout << endl;
}
函数名称 | 功能说明 |
---|---|
size | 获取数据个数 |
capacity | 获取容量大小 |
empty | 判断是否为空 |
resize | 改变vector的size |
reserve | 改变vector的capacity |
注意:
1.capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
2.reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问
题。
3.resize在开空间的同时还会进行初始化,影响size。
void TestVectorExpand()
{
size_t sz;
vector<int> v;
//v.resize(100);
//v.reserve(100);
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
void Test3()
{
vector<int> v1;
cout << v1.max_size() << endl;
TestVectorExpand();
}
void TestVectorExpand()
{
size_t sz;
vector<int> v;
//v.resize(100);
v.reserve(100);
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
void Test3()
{
vector<int> v1;
cout << v1.max_size() << endl;
TestVectorExpand();
}
函数名称 | 功能说明 |
---|---|
push_back | 尾插 |
pop_back | 尾删 |
find | 查找 |
insert | 在position之前插入val |
erase | 删除position位置的数据 |
swap | 交换两个vector的数据空间 |
operator[] | 像数组一样访问 |
void Test4()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.push_back(4);
v1.push_back(5);
vector<int>::iterator pos = find(v1.begin(), v1.end(), 3);
if (pos != v1.end())
{
v1.insert(pos, 30);
}
for (size_t i = 0; i < v1.size(); i++)
{
cout << v1[i] << ' ';
}
cout << endl;
pos = find(v1.begin(), v1.end(), 300);
if (pos != v1.end())
{
v1.erase(pos);
}
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
}
void Test5()
{
vector<int> v1;
v1.push_back(10);
v1.push_back(1);
v1.push_back(44);
v1.push_back(223);
v1.push_back(32);
v1.push_back(56);
v1.push_back(15);
v1.push_back(90);
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
sort(v1.begin(), v1.end());
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
//less ls;
//greater gt;
//sort(v1.begin(), v1.end(), gt);
sort(v1.begin(), v1.end(), greater<int>());
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
}
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
可能导致迭代器失效的操作有很多,下面我们来一一介绍。
会引起其底层空间改变的操作,都有可能导致迭代器失效,比如:resize、reserve、insert、assign、push_back等。
void Test6()
{
vector<int> v{ 1,2,3,4,5,6 };
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。
void Test7()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
}
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
总结:
迭代器失效解决办法:在使用前,对迭代器重新赋值即可。
namespace fiora
{
template<class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin()const
{
return _start;
}
const_iterator end()const
{
return _finish;
}
size_t size()const
{
return _finish - _start;
}
size_t capacity()const
{
return _end_of_storage - _start;
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t sz = size();
T* tmp = new T[n];
if (_start)
{
//memcpy(tmp, _start, sizeof(T) * sz);
for (size_t i = 0; i < sz; i++)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tmp;
_finish = _start + sz;
_end_of_storage = _start + n;
}
}
void resize(size_t n, const T& val = T())
{
if (n > capacity())
{
reserve(n);
}
if (n > size())
{
while (_finish < _start + n)
{
*_finish = val;
_finish++;
}
}
else
{
_finish = _start + n;
}
}
iterator insert(iterator pos, const T& x)
{
assert(pos >= _start);
assert(pos <= _finish);
if (_finish == _end_of_storage)
{
size_t len = pos - _start;
reserve(capacity() == 0 ? 4 : capacity() * 2);
pos = len + _start;
}
//向后挪动数据
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
end--;
}
*pos = x;
_finish++;
return pos;
}
//erase返回删除位置的下一个位置的迭代器
iterator erase(iterator pos)
{
assert(pos >= _start);
assert(pos < _finish);
iterator begin = pos + 1;
while (begin < _finish)
{
*(begin - 1) = *begin;
begin++;
}
_finish--;
return pos;
}
T& front()
{
assert(size() > 0);
return *_start;
}
T& back()
{
assert(size() > 0);
return *(_finish - 1);
}
void push_back(const T& x)
{
if (_finish == _end_of_storage)
{
reserve(capacity() == 0 ? 4 : capacity() * 2);
}
*_finish = x;
_finish++;
}
void pop_back()
{
assert(_finish > _start);
_finish--;
}
const T& operator[](size_t pos)const
{
assert(pos < size());
return _start[pos];
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_end_of_storage, v._end_of_storage);
}
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
vector()
:_start(nullptr)
,_finish(nullptr)
,_end_of_storage(nullptr)
{
}
/*vector(const vector& v)
:_start(nullptr)
,_finish(nullptr)
,_end_of_storage(nullptr)
{
reserve(v.size());
for (const auto& e : v)
{
push_back(e);
}
}*/
vector(const vector<T>& v)
:_start(nullptr)
,_finish(nullptr)
,_end_of_storage(nullptr)
{
vector<T> tmp(v.begin(), v.end());
swap(tmp);
}
vector(size_t n, const T& val = T())
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{
reserve(n);
for (size_t i = 0; i < n; ++i)
{
push_back(val);
}
}
template<class Iterator>
vector(Iterator first, Iterator last)
:_start(nullptr)
,_finish(nullptr)
,_end_of_storage(nullptr)
{
while (first != last)
{
push_back(*first);
first++;
}
}
~vector()
{
delete[] _start;
_start = _finish = _end_of_storage = nullptr;
}
private:
iterator _start;
iterator _finish;
iterator _end_of_storage;
};
}
到这里,关于vector的介绍和常见功能我们就学习结束了,vector在实际中非常的重要,但在实际中我们只要熟悉常见的接口就可以了,最重要的是理解他的底层原理,要能够自己模拟实现出一个简单的vector。
最后,感谢各位大佬的耐心阅读和支持,觉得本篇文章写的不错的朋友可以三连关注支持一波,如果有什么问题或者本文有错误的地方大家可以私信我,也可以在评论区留言讨论,再次感谢各位。