统计学、机器学习、数据挖掘、深度学习的关系

1、统计学定义:

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。

2、机器学习定义:

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

3、数据挖掘定义:

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

4、深度学习定义:

深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。

数据挖掘和统计学都是进行数据发现的方法,数据挖掘侧重工具应用,统计学侧重理论方法;数据挖掘是目的,机器学习是实现数据挖掘的手段之一,机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术;深度学习是机器学习现在比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。

统计学、机器学习、数据挖掘、深度学习的关系_第1张图片

                       

你可能感兴趣的:(大数据导论作业,机器学习,深度学习,数据挖掘)