按理来说,本人不该发表此类专业的文章,但是从鄙人的开发经历出发,让本人斗胆在此对远控软件做一些论述,谈论一点自己的认识。
程序工程代码地址:点击此处下载。
程序分为两个部分,控制端和被控端,他们之间通过网络来连接和交互,其工作过程如下:
被控端每隔20毫秒截屏,图像压缩后,网络传输给控制端并实时显示;被控端时刻接收控制端的控制消息(主要是键盘的按键、鼠标的位置和动作),并模拟实现这些键盘鼠标操作。
控制端代码主要在RemoteControlRecver.cpp和RemoteControlListener.cpp中,被控端代码主要在RemoteControlProc.cpp和RemoteControl.cpp中。
本程序只是自己对远控的探索和demo演示,其实现跟本文思路一样,距离商用还有很大距离。是从实际的效果看,程序已经具备了远控软件的基本功能。
经典的远控,比如国外的teamViewer、国内的ToDesk,虽然功能强大、精密复杂,但并不说明它的高不可攀(远控软件,除非算法上的突破,无论理论和工程技术,恐怕都无法为设计开发者赢得博士学位),它的原理无非就是:将被控端的屏幕复制到主控端,并时刻保持刷新,主控端跟使用本地的屏幕一样,使用菜单、键盘输入、鼠标点击等视觉交互,在该屏幕上的键盘和鼠标操作,通过网络传输给被控端,转化为被控端相应的键盘和鼠标操作。
当然这是简要的描述,中间需要考虑很多因素,比如对网络流量的考虑:如果每一帧画面都是截屏数据,要保证动画的连贯和逼真,每秒至少要24帧以上的画面,每一帧画面如果采用24位真彩色、屏幕分辨率假定是常用的1920x1080,此时的截屏,未压缩前的大小是6220800字节,压缩后一般也有200kb以上(压缩率跟画面的像素有关,一般来讲,越是像素排列无规则、相对速度运动越快、变化率越大的颜色值,压缩比例越低),这时,每秒的带宽压力要达到80M/b以上,这是一个恐怖的数字,实际环境可能达不到这个条件,如何减少和压缩视频传输正是此类软件的核心技术之一。
一般来说,如果要保证此类软件的敏捷开发,可以使用第三方开发包,比如ffmpeg,此类开发包中有多种方案可以实现平滑高效的视频传输,比如h264,h265协议接口,此类接口可以将传输数据减少1到2个数量级,将数据传输减少到每秒几百kb,理论上可以满足实际需要,但是并不够优秀,从测试中发现,像微软自带的远控软件mstsc.exe,其在100kb以内的网速下,画面依然清晰、控制依然流畅,这就不是第三方开发包可以轻易达到的。另外此类第三方接口中没有键盘鼠标消息的处理,很多定制化需求不能被满足,还需要对开发包进一步定制开发。
如果对第三方开发包不太满意,就只有自己动手手撸了。
魔鬼隐藏在细节中。从经验来说,就算很简单的理论描述,工程实践也会有很多细节需要填坑,理学在前,工程学在后,这也许就是工程学存在的意义吧。
下面就是对思路的工程细节描述。
主控端的代码过程如下:
每一个被控客户端要创建两个线程,一个负责与被控端的网络通信,一个负责窗口消息处理。
网络通信线程有两个执行节点,一个节点是执行recv接收被控端的截屏数据,一个执行节点是send函数,用于发送本窗口的键盘鼠标消息。窗口消息处理线程主要是实时刷新和显示被控端的截屏,主要是靠处理WM_PAINT消息,每当网络通信线程接收到一帧后会调用InvalidateRect,此时窗口程序会执行刷新过程。此线程另外一个功能是,捕获被控的键盘鼠标消息,并存放在全局变量中,这样网络通信线程就可以读取和发送给被控端,被控端对收到的键盘鼠标消息模拟为本地的键盘鼠标操作。
两个线程共用的客户端结构体如下:
typedef struct {
SOCKET hSockClient; //被控客户端socket
sockaddr_in stAddrClient; //被控地址
HWND hwndWindow; //窗口线程的窗口句柄,据此可以保存和找到该线程,并交互鼠标键盘消息
char* lpClientBitmap; //被控的屏幕像素地址
char* dibits; //被控像素处理内存缓冲
int bufLimit; //像素地址块分配大小
int lpbmpDataSize;//像素实际大小
int dataType; //像素块的类型,有两种,一种是截屏,一种是屏幕刷新值
UNIQUECLIENTSYMBOL unique; //被控的信息
STREMOTECONTROLPARAMS param; //被控的屏幕宽度高度位数等显示信息
}REMOTE_CONTROL_PARAM, * LPREMOTE_CONTROL_PARAM;
被控端比较简单,主要是在一个循环中,获取截屏数据,发送给控制端,然后接收控制端的键盘鼠标消息,并将这些键盘鼠标消息转换为本地的键盘鼠标消息。
其中,很多api采用了函数指针的调用方式,理解时去掉前面的lp前缀就可以了。
int GetScreenFrame(int ibits, char* szScreenDCName, int left, int top, int ScrnResolutionX, int ScrnResolutionY, char* lpBuf, char** lppixel, int* pixelsize) {
int iRes = 0;
HWND hwnd = lpGetDesktopWindow();
HDC hdc = lpGetDC(hwnd);
//HDC hdc = lpCreateDCA(szScreenDCName, 0, 0, 0);
//HDC hdc = lpGetDC(0);
if (hdc == 0)
{
writeLog("GetScreenFrame lpCreateDCA error:%d\r\n", GetLastError());
return FALSE;
}
HDC hdcmem = lpCreateCompatibleDC(hdc);
HBITMAP hbitmap = lpCreateCompatibleBitmap(hdc, ScrnResolutionX, ScrnResolutionY);
lpSelectObject(hdcmem, hbitmap);
iRes = lpBitBlt(hdcmem, 0, 0, ScrnResolutionX, ScrnResolutionY, hdc, 0, 0, SRCCOPY);
if (hbitmap == 0)
{
lpReleaseDC(0, hdc);
lpDeleteDC(hdcmem);
lpDeleteObject(hbitmap);
writeLog("GetScreenFrame lpCreateCompatibleBitmap error:%d\r\n", GetLastError());
return FALSE;
}
int wbitcount = 0;
if (ibits <= 1) {
wbitcount = 1;
}
else if (ibits <= 4) {
wbitcount = 4;
}
else if (ibits <= 8) {
wbitcount = 8;
}
else if (ibits <= 16) {
wbitcount = 16;
}
else if (ibits <= 24) {
wbitcount = 24;
}
else {
wbitcount = 32;
}
DWORD dwpalettesize = 0;
if (wbitcount <= 8)
{
dwpalettesize = (1 << wbitcount) * sizeof(RGBQUAD);
}
DWORD dwbmbitssize = ((ScrnResolutionX * wbitcount + 31) / 32) * 4 * ScrnResolutionY;
DWORD dwBufSize = dwbmbitssize + dwpalettesize + sizeof(BITMAPINFOHEADER) + sizeof(BITMAPFILEHEADER);
LPBITMAPFILEHEADER bmfhdr = (LPBITMAPFILEHEADER)lpBuf;
bmfhdr->bfType = 0x4d42;
bmfhdr->bfSize = dwBufSize;
bmfhdr->bfReserved1 = 0;
bmfhdr->bfReserved2 = 0;
bmfhdr->bfOffBits = (DWORD)sizeof(BITMAPFILEHEADER) + (DWORD)sizeof(BITMAPINFOHEADER) + dwpalettesize;
LPBITMAPINFOHEADER lpbi = (LPBITMAPINFOHEADER)(lpBuf + sizeof(BITMAPFILEHEADER));
lpbi->biSize = sizeof(BITMAPINFOHEADER);
lpbi->biWidth = ScrnResolutionX;
lpbi->biHeight = ScrnResolutionY;
lpbi->biPlanes = 1;
lpbi->biBitCount = wbitcount;
lpbi->biCompression = BI_RGB;
lpbi->biSizeImage = 0;
lpbi->biXPelsPerMeter = 0;
lpbi->biYPelsPerMeter = 0;
lpbi->biClrUsed = 0;
lpbi->biClrImportant = 0;
char* lpData = lpBuf + sizeof(BITMAPINFOHEADER) + sizeof(BITMAPFILEHEADER) + dwpalettesize;
iRes = lpGetDIBits(hdcmem, hbitmap, 0, ScrnResolutionY, lpData, (BITMAPINFO*)lpbi, DIB_RGB_COLORS);
lpDeleteDC(hdcmem);
lpDeleteObject(hbitmap);
lpReleaseDC(0, hdc);
if (iRes == 0)
{
writeLog("lpGetDIBits error:%d\r\n", GetLastError());
return FALSE;
}
*lppixel = lpData;
*pixelsize = dwbmbitssize;
return dwBufSize;
}
上面有几点需要啰嗦几句:
(1) windows上的gdi二维图像api都是用DC句柄来操作的。测试发现,GetDC(0)等同于CreateDC(“display”,0, 0, 0),也等同于GetDC(GetDesktopWindow()),这几种用法都是获取桌面的DC。
(2) CreateCompatibleBitmap函数中的HDC要使用桌面的HDC,而不能是hdcmem,这是一个隐蔽的知识盲点,microsoft的解释如下:
大意是:CreateCompatibleBitmap产生的hBitmap位图中的位数和颜色跟使用的hdc参数中的保持一致,而使用CreateCompatibleDC函数创建的HDC默认都是2位的位图。
(3) GetDIBits函数使用时有文档中未指明的盲点。比如lpbi参数指向的BITMAPINFO,在256位模式下,要给调色板留下空间,调色板一般需要另外的1024字节大小的空间,否则会发生内存越界异常。另外,此函数如果不知道如何填写位图参数,可以在第一次调用时,lpData参数为空,调用后,函数会自动填充BITMAPINFO结构的参数,然后再第二次调用此函数,即可得到相应参数的位图数据。
BITMAPINFO结构体定义如下:
typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;
} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;
typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];
} BITMAPINFO, FAR *LPBITMAPINFO, *PBITMAPINFO;
该函数的官方文档如下:
注意这里的描述,如果lpvBits参数有效,那么前6个参数必须初始化,并且扫描线的数值必须是Dword对齐。前6个参数是biSizeImage之前的6个参数,测试中发现扫描线的行数并不需要dword对齐。
函数中的hbitmap不能被SelectObject选中,测试中发现,hbitmap使用SelectObject被选中,这样调用没有问题。
另外,建议查看文档时使用英文版,中文版好多翻译不准确或者不严谨,长期依赖会导致开发水平得不到提高。
else if (mapit->second->dataType == REMOTE_CLIENT_SCREEN)
{
char* lpClientBitmap = mapit->second->lpClientBitmap;
HDC hdcScr = CreateDCA("DISPLAY", NULL, NULL, NULL);
HDC hdcSource = CreateCompatibleDC(hdcScr);
LPBITMAPFILEHEADER pBMFH = (LPBITMAPFILEHEADER)lpClientBitmap;
void* pDibts = (void*)(lpClientBitmap + pBMFH->bfOffBits);
LPBITMAPINFOHEADER pBMIH = (LPBITMAPINFOHEADER)(lpClientBitmap + sizeof(BITMAPFILEHEADER));
DWORD dwDibtsSize = ((pBMIH->biWidth * pBMIH->biBitCount + 31) / 32) * 4 * pBMIH->biHeight;
char* pRemoteSrnData = 0;
HBITMAP hRemoteBM = CreateDIBSection(0, (LPBITMAPINFO)pBMIH, DIB_RGB_COLORS, (void**)&pRemoteSrnData, 0, 0);
if (hRemoteBM)
{
memcpy(pRemoteSrnData, pDibts, dwDibtsSize);
HBITMAP hSrcBM = (HBITMAP)SelectObject(hdcSource, hRemoteBM);
int iX = pBMIH->biWidth;
int iY = pBMIH->biHeight;
RECT stRect = { 0 };
int iRet = GetClientRect(hWnd, &stRect);
//iRet = BitBlt(hdcDst, 0, 0, stRect.right - stRect.left, stRect.bottom - stRect.top,hdcSrc, 0, 0, SRCCOPY);
iRet = StretchBlt(hdcDst, 0, 0, stRect.right - stRect.left, stRect.bottom - stRect.top, hdcSource, 0, 0, iX, iY, SRCCOPY);
DeleteObject(hSrcBM);
}
else {
WriteLog("RemoteControl CreateDIBSection error:%u\r\n", GetLastError());
}
DeleteObject(hRemoteBM);
DeleteDC(hdcScr);
DeleteDC(hdcSource);
mapit->second->dataType = 0;
EndPaint(hWnd, &stPS);
return TRUE;
}
其中,lpClientBitmap指向接收到的内存中的bmp文件,调用CreateDIBSection函数创建一个类似于此bmp文件格式的hbitmap句柄后,将bmp文件的像素值拷贝到句柄指向的像素内存地址中,并使用StretchBlt显示在当前窗口中的客户区中。
`
typedef struct {
int screenx;
int screeny;
int bitsperpix;
}STREMOTECONTROLPARAMS, * LPSTREMOTECONTROLPARAMS;
typedef struct {
POINT pos;
POINT size;
}REMOTECONTROLMOUSEPOS, * LPREMOTECONTROLMOUSEPOS;
typedef struct {
unsigned char key;
unsigned char shiftkey;
}REMOTECONTROLKEY, * LPREMOTECONTROLKEY;
typedef struct {
int delta;
int xy;
}REMOTECONTROLWHEEL, * LPREMOTECONTROLWHEEL;
typedef struct {
DWORD dwType;
POINT stPT;
DWORD dwTickCnt;
int iDelta;
}STMOUSEACTION, * LPMOUSEACTION;
`
该部分主要有以下几个变量描述:键盘按键信息,鼠标左键、中键、右键是否有点击动作,鼠标滚轮的滚动距离和坐标、鼠标的坐标位置。窗口处理程序监听鼠标键盘消息,将这些消息填充为上述结构体,并由通信线程发送给被控端。
测试中发现,实际的网速有可能偏低,比如好些服务器网络带宽只有几百kb,而上述依靠截屏数据帧的方式,按照40ms一帧的延时,8位位图数据帧,经过zip压缩后,网络流量可以平均减少10倍左右也就是大约1~2MB左右,依然无法满足实际需求,因此采用了如下几种改善措施:
if (mapit->second->dataType == REMOTE_PIXEL_PACKET)
{
char* lpClientBitmap = mapit->second->lpClientBitmap;
RECT rect;
GetClientRect(hWnd, &rect);
HDC hdcScr = CreateDCA("DISPLAY", 0, 0, 0);
HDC hdcSource = CreateCompatibleDC(hdcScr);
HBITMAP hbmp = CreateCompatibleBitmap(hdcScr, mapit->second->param.screenx, mapit->second->param.screeny);
SelectObject(hdcSource, hbmp);
result = StretchBlt(hdcSource, 0, 0, mapit->second->param.screenx, mapit->second->param.screeny, hdcDst, 0, 0,
rect.right - rect.left, rect.bottom - rect.top, SRCCOPY);
if (result)
{
char buf[0x1000];
LPBITMAPINFO lpbmpinfo = (LPBITMAPINFO)buf;
memset(lpbmpinfo, 0, sizeof(BITMAPINFO));
lpbmpinfo->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
lpbmpinfo->bmiHeader.biBitCount = mapit->second->param.bitsperpix;
lpbmpinfo->bmiHeader.biPlanes = 1;
lpbmpinfo->bmiHeader.biWidth = mapit->second->param.screenx;
lpbmpinfo->bmiHeader.biHeight = mapit->second->param.screeny;
//DWORD dwbmbitssize = ((lpbmpinfo->bmiHeader.biWidth * lpbmpinfo->bmiHeader.biBitCount + 31) / 32) * 4 * lpbmpinfo->bmiHeader.biHeight;
lpbmpinfo->bmiHeader.biSizeImage = 0;
char* data = mapit->second->dibits;
result = GetDIBits(hdcSource, hbmp, 0, lpbmpinfo->bmiHeader.biHeight, data, lpbmpinfo, DIB_RGB_COLORS);
if (result && result != ERROR_INVALID_PARAMETER)
{
int byteperpix = mapit->second->param.bitsperpix / 8;
int itemsize = (sizeof(DWORD) + mapit->second->param.bitsperpix / 8);
int cnt = mapit->second->lpbmpDataSize / itemsize;
for (int i = 0; i < cnt; i++)
{
int index = itemsize * i;
int offset = *(DWORD*)(lpClientBitmap + index);
if (offset > mapit->second->bufLimit)
{
WriteLog("pixel offset error :%u\r\n", offset);
break;
}
if (byteperpix == 4)
{
DWORD color = *(DWORD*)(lpClientBitmap + index + sizeof(DWORD));
*(DWORD*)(data + offset) = color;
}
else if (byteperpix == 3)
{
char* color = lpClientBitmap + index + sizeof(DWORD);
memcpy(data + offset, color, 3);
}
else if (byteperpix == 2)
{
WORD color = *(WORD*)(lpClientBitmap + index + sizeof(DWORD));
*(WORD*)(data + offset) = color;
}
else if (byteperpix == 1)
{
unsigned char color = *(lpClientBitmap + index + sizeof(DWORD));
*(data + offset) = color;
}
}
result = SetDIBits(hdcSource, hbmp, 0, mapit->second->param.screeny, data, lpbmpinfo, DIB_RGB_COLORS);
if (result)
{
result = StretchBlt(hdcDst, 0, 0, rect.right - rect.left, rect.bottom - rect.top, hdcSource, 0, 0,
mapit->second->param.screenx, mapit->second->param.screeny, SRCCOPY);
if (result)
{
}
else {
WriteLog("RemoteControl StretchBlt error:%u\r\n", GetLastError());
}
}
else {
WriteLog("RemoteControl SetDIBits error:%u\r\n", GetLastError());
}
}
else {
WriteLog("RemoteControl GetDIBits error:%u\r\n", GetLastError());
}
DeleteObject(hbmp);
DeleteDC(hdcScr);
DeleteDC(hdcSource);
}
else {
WriteLog("RemoteControl StretchBlt error:%d\r\n", GetLastError());
}
mapit->second->dataType = 0;
EndPaint(hWnd, &stPS);
return TRUE;
}
此处第一个StretchBlt函数的作用是,将主控端显示窗口中的像素值转化为适合被控端宽度高度的大小,原因是,被控端无法得知主控端显示窗口的大小,被控发送的像素值位置是对本窗口的偏移值,如果两边窗口大小不一致,那么被控端的像素位置就失去了意义。此时通过StretchBlt函数转换后,就可以将像素值直接写入转换后的hbitmap,并在此调用StretchBlt函数,将客户端的窗口大小调整为主控的显示窗口的大小。此处也用到了SetDIBits和GetDIBits函数,该函数上边已经讲过了,功能比较强大,但是使用起来比较复杂。此处有个内存越界的bug,也就是像素的偏移值会大于整个截屏的像素最大值,会导致WriteLog那一行的执行,原因因该是,两边的窗口大小不一致,若被控的窗口比较大,而主控端窗口比较小,而主控端的截屏处理缓冲区是按照主控的的窗口大小分配的,转换坐标处理时,有可能发生内存溢出。