【数据可视化】红楼梦文本分析挖掘及可视化

from __future__ import unicode_literals
import warnings

warnings.filterwarnings("ignore")
default_encoding = 'utf-8'

import gensim
import jieba
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn.cluster import KMeans
import scipy.cluster.hierarchy as sch

class StoneStory:
  
    def __init__(self):
        self.add_to_dict(self.name_list())
        self.model = self.tranning()
        self.np_names, self.word_vectors = self.getVector(self.model, self.name_list())

        self.font_yahei_consolas = FontProperties(fname="huawenfansong.ttf")
        self.stopword = pd.read_csv("stopwords.csv", header=None, names=["Stopwords"], encoding='utf-8')
        stopwords = [w[0] for w in self.stopword.values]
        # 1.红楼梦正文
        self.RedDream = pd.read_csv("StoneStory.txt", header=None, names=["Reddream"], encoding='utf-8')
        # print '《红楼梦》全文: '
        # print self.RedDream
        # print("---------------------------")
        # 2.提取章节名
        self.indexChap = self.RedDream.Reddream.str.contains(u"^第+.+回 ")
        # 4.去除章节后重建索引
        RedDream_content = self.RedDream[~self.indexChap].reset_index(drop=True)
        # 5.处理章节名,使用空格分割字符串
        ## 找出每一章节的头部索引和尾部索引
        ## 每一章节的名字
        self.chapnames = self.RedDream.Reddream[self.indexChap].reset_index(drop=True)
        self.chapnamesplit = self.chapnames.str.split(u" ").reset_index(drop=True)
        # print '《红楼梦》章节名: '
        # print self.chapnamesplit
        # print("---------------------------")
        # 6.建立保存数据的数据表
        self.Red_df = pd.DataFrame(list(self.chapnamesplit), columns=["Chapter", "Leftname", "Rightname"])
        # 添加章节id和完整标题
        self.Red_df["Chapter_id"] = np.arange(1, 121)
        self.Red_df["ChapName"] = self.Red_df.Leftname + "," + self.Red_df.Rightname
        # 每章的开始行(段)索引
        self.Red_df["Start_Chapter_id"] = self.indexChap[self.indexChap == True].index
        ## 每章的结束行数
        self.Red_df["end_Chapter_id"] = self.Red_df["Start_Chapter_id"][
                                        1:len(self.Red_df["Start_Chapter_id"])].reset_index(
            drop=True) - 1
        self.Red_df["end_Chapter_id"][[len(self.Red_df["end_Chapter_id"]) - 1]] = self.RedDream.index[-1]
        ## 每章的段落长度
        self.Red_df["Lengthchaps"] = self.Red_df.end_Chapter_id - self.Red_df.Start_Chapter_id
        self.Red_df["Article"] = " "
        ## 每章节的内容
        for ii in self.Red_df.index:
            ## 将内容使用句号连接
            chapid = np.arange(self.Red_df.Start_Chapter_id[ii] + 1, int(self.Red_df.end_Chapter_id[ii]))
            ## 每章节的内容,
            self.Red_df["Article"][ii] = "".join(list(self.RedDream.Reddream[chapid]))
            ##每章的字数
            self.Red_df["len_char"] = self.Red_df.Article.apply(len)
        # print self.Red_df

    # 7.获取某一章的段落索引
    def Chapter_index(self, chap_numb):
        return np.arange(self.Red_df.Start_Chapter_id[chap_numb - 1] + 1,
                         int(self.Red_df.end_Chapter_id[chap_numb - 1]) + 1)

    # 8.获取某一章的内容
    def Chapter_Content(self, chap_numb):
        index = np.arange(self.Red_df.Start_Chapter_id[chap_numb - 1] + 1,
                          int(self.Red_df.end_Chapter_id[chap_numb - 1]) + 1)
        return self.RedDream.Reddream[index]

    # 9.字长和段落长的散点图
    def char_len_para_len_distribute1(self):
        plt.figure(figsize=(8, 6))
        plt.scatter(self.Red_df.Lengthchaps, self.Red_df.len_char)
        for ii in self.Red_df.index:
            # plt.text(Red_df.Lengthchaps[ii]+1,Red_df.len_char[ii],Red_df.Chapter[ii])
            plt.text(self.Red_df.Lengthchaps[ii] - 2, self.Red_df.len_char[ii] + 100, self.Red_df.Chapter_id[ii],
                     size=7)
        plt.xlabel('章节段落长度', fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        plt.ylabel('章节字数', fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        plt.title('《红楼梦》', fontproperties=self.font_yahei_consolas,
                  fontsize=20)
        plt.show()

    # 10.折线图
    def char_len_para_len_distribute2(self):
        plt.figure(figsize=(12, 10))
        plt.subplot(2, 1, 1)
        plt.plot(self.Red_df.Chapter_id, self.Red_df.Lengthchaps, "ro-", label="paragraph")
        plt.ylabel("章节段落长度", fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        plt.title("《红楼梦》", fontproperties=self.font_yahei_consolas,
                  fontsize=20)
        ## 添加平均值
        plt.hlines(np.mean(self.Red_df.Lengthchaps), -5, 125, "b")
        plt.xlim((-5, 125))
        plt.subplot(2, 1, 2)
        plt.plot(self.Red_df.Chapter_id, self.Red_df.len_char, "ro-", label="paragraph")
        plt.xlabel("章节id", fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        plt.ylabel("章节字数", fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        ## 添加平均值
        plt.hlines(np.mean(self.Red_df.len_char), -5, 125, "b")
        plt.xlim((-5, 125))
        plt.show()

    # 读取人物词典
    def name_list(self):
        with open('names.txt', encoding='utf-8') as f:
            characters_names = [line.strip('\n') for line in f.readlines()]
        return characters_names

    # 添加人物词典
    def add_to_dict(self, characters_names):
        for name in characters_names:
            jieba.add_word(name)  # 保证添加的词不会被cut掉

    # 训练词向量
    def tranning(self):
        with open('StoneStory.txt', encoding='utf-8') as f:
            data = [line.strip()
                    for line in f.readlines()
                    if line.strip()]
        sentences = []
        for line in data:
            words = list(jieba.cut(line))
            sentences.append(words)
        model = gensim.models.Word2Vec(sentences, vector_size=100, window=5, min_count=5, workers=4)  # 100维词向量
        return model

    # 训练人物的词向量
    def getVector(self, model, characters_names):
        all_names = []
        word_vectors = None
        np_names = None
        for name in characters_names:
            if name in model.wv:
                all_names.append(name)
        for name in all_names:
            if word_vectors is None:
                word_vectors = model.wv[name]
            else:
                # 存储各名字对应的词向量
                word_vectors = np.vstack((word_vectors, model.wv[name]))
                np_names = np.array(all_names)
        return np_names, word_vectors

    # 查找人物关系
    def find_relationship(self, a, b, c):
        """
        返回 d
        a与b的关系,跟c与d的关系一样
        """
        d, _ = self.model.wv.most_similar(positive=[c, b], negative=[a])[0]
        print("“{}”与“{}”的关系,跟“{}”与“{}”有类似的关系".format(a, b, c, d))

    # 层次聚类查看人物关系
    def hierarchy(self):
        Y = sch.linkage(self.word_vectors, method="ward")
        _, ax = plt.subplots(figsize=(10, 40))
        Z = sch.dendrogram(Y, orientation='right')
        idx = Z['leaves']
        ax.set_xticks([])
        ax.set_title('《红楼梦》人物关系', fontproperties=self.font_yahei_consolas,
                     fontsize=20)
        ax.set_yticklabels(self.np_names[idx], fontproperties=self.font_yahei_consolas,
                           fontsize=12)
        ax.set_frame_on(False)
        plt.show()

    # 按词频找出主要人物
    def find_main_charecters(self, num=10):
        with open('StoneStory.txt', encoding='utf-8') as f:
            data = f.read()
        with open('names.txt', encoding='utf-8') as f:
            characters_names = [line.strip('\n') for line in f.readlines()]
        count = []
        for name in characters_names:
            count.append([name, data.count(name)])
        count.sort(key=lambda x: x[1])
        _, ax = plt.subplots()
        numbers = [x[1] for x in count[-num:]]
        names = [x[0] for x in count[-num:]]
        ax.barh(range(num), numbers, color='red', align='center')
        ax.set_title('《红楼梦》主要人物', fontproperties=self.font_yahei_consolas,
                     fontsize=20)
        ax.set_yticks(range(num))
        ax.set_yticklabels(names, fontproperties=self.font_yahei_consolas, )
        plt.xlabel('人物出现的词频', fontproperties=self.font_yahei_consolas,
                   fontsize=14)
        plt.show()

    # kmeans聚类人物关系
    def kmeans(self):
        N = 3
        label = KMeans(N).fit(self.word_vectors).labels_
        for c in range(N):
            print("类别{}:".format(c + 1))
            for idx, name in enumerate(self.np_names[label == c]):
                print(name),
                if idx % 10 == 9:
                    print('')
            print(' ')

【数据可视化】红楼梦文本分析挖掘及可视化_第1张图片

【数据可视化】红楼梦文本分析挖掘及可视化_第2张图片

【数据可视化】红楼梦文本分析挖掘及可视化_第3张图片

【数据可视化】红楼梦文本分析挖掘及可视化_第4张图片

完整代码请见 https://download.csdn.net/download/m0_53700832/87842654

你可能感兴趣的:(信息可视化,python,开发语言)