一般的类和方法,只能使用具体的类型: 要么是基本类型,要么是自定义的类。如果要编写可以应用于多种类型的
代码,这种刻板的限制对代码的束缚就会很大。----- 来源《Java编程思想》对泛型的介绍。
泛型是在JDK1.5引入的新的语法,通俗讲,泛型:**就是适用于许多许多类型。**从代码上讲,就是对类型实现了参数
化
实现一个类,类中包含一个数组成员,使得数组中可以存放任何类型的数据,也可以根据成员方法返回数组中某个下标的值?
思路:
实际操作后我们会发现
虽然在这种情况下,当前数组任何数据都可以存放,**但是,更多情况下,我们还是希望他只能够持有一种数据类
型。而不是同时持有这么多类型。**所以,泛型的主要目的:就是指定当前的容器,要持有什么类型的对象。让编译
器去做检查。此时,就需要把类型,作为参数传递。需要什么类型,就传入什么类型。
class 泛型类名称<类型形参列表> {
// 这里可以使用类型参数
}
class ClassName<T1, T2, ..., Tn> {
}
class 泛型类名称<类型形参列表> extends 继承类/* 这里可以使用类型参数 */ {
// 这里可以使用类型参数
}
class ClassName<T1, T2, ..., Tn> extends ParentClass<T1> {
// 可以只使用部分类型参数
}
< T >代表一个占位符 表示当前类是一个泛型类
类型形参一般使用一个大写字母表示,常用的名称有:
E 表示 Element
K 表示 Key
V 表示 Value
N 表示 Number
T 表示 Type
S, U, V 等等 - 第二、第三、第四个类型
泛型类<类型实参> 变量名; // 定义一个泛型类引用
new 泛型类<类型实参>(构造方法实参); // 实例化一个泛型类对象
MyArray<Integer> list = new MyArray<Integer>();
注意:泛型只能接受类,所有的基本数据类型必须使用包装类
当编译器可以根据上下文推导出类型实参时,可以省略类型实参的填写
MyArray<Integer> list = new MyArray<>(); // 可以推导出实例化需要的类型实参为 Integer
简单的程序展示泛型的编译
我们还是定义了一个泛型类 Array
class Array<T>{
public T[] array = (T[]) new Object[10];
}
public class test {
public static void main(String[] args) {
Array<Integer> array = new Array<>();
}
}
通过命令:javap -c 查看字节码文件,所有的T都是Object。
在编译的过程当中,将所有的T替换为Object这种机制,我们称为:擦除机制。
Java的泛型机制是在编译级别实现的。编译器生成的字节码在运行期间并不包含泛型的类型信息。
在定义泛型类时,有时需要对传入的类型变量做一定的约束,可以通过类型边界来约束。
class 泛型类名称<类型形参 extends 类型边界> {
...
}
public class MyArray<E extends Number> {
...
}
只接受 Number 的子类型作为 E 的类型实参
MyArray<Integer> l1; // 正常,因为 Integer 是 Number 的子类型
MyArray<String> l2; // 编译错误,因为 String 不是 Number 的子类型
没有指定类型边界 E,可以视为 E extends Object
public class MyArray<E extends Comparable<E>> {
...
}
//E必须是实现了Comparable接口的
方法限定符 <类型形参列表> 返回值类型 方法名称(形参列表) { … }
public class test {
public static <T> void swap(T[] array, int i, int j){
T temp = array[i];
array[i] = array[j];
array[j] = temp;
}
public static void main(String[] args) {
String[] strings = new String[]{"abc","def"};
Integer[] ints = new Integer[]{1,2};
swap(strings,0,1);
swap(ints,0,1);
System.out.println(strings[0]);
System.out.println(strings[1]);
System.out.println(ints[0]);
System.out.println(ints[1]);
}
}
? 用于在泛型的使用,即为通配符
class Message<T> {
private T message;
public T getMessage() {
return message;
}
public void setMessage(T message) {
this.message = message;
}
}
public class TestDemo {
public static void main(String[] args) {
Message<Integer> message = new Message() ;
message.setMessage(99);
fun(message); // 出现错误,只能接收String
}
public static void fun(Message<String> temp){
System.out.println(temp.getMessage());
}
}
以上程序会带来新的问题,如果现在泛型的类型设置的不是String,而是Integer.
我们需要的解决方案:可以接收所有的泛型类型,但是又不能够让用户随意修改。这种情况就需要使用通配符"?"来处理
范例:使用通配符
class Message<T> {
private T message;
public T getMessage() {
return message;
}
public void setMessage(T message) {
this.message = message;
}
}
public class TestDemo {
public static void main(String[] args) {
Message<Integer> message = new Message() ;
message.setMessage(99);
fun(message); // 出现错误,只能接收String
}
public static void fun(Message<?> temp){
System.out.println(temp.getMessage());
}
}
<? extends 上界>
<? extends Number>//可以传入的实参类型是Number或者Number的子类
class Food {
}
class Fruit extends Food {
}
class Apple extends Fruit {
}
class Banana extends Fruit {
}
class Message<T> { // 设置泛型
private T message;
public T getMessage() {
return message;
}
public void setMessage(T message) {
this.message = message;
}
}
public class TestDemo {
public static void main(String[] args) {
Message<Apple> message = new Message<>();
message.setMessage(new Apple());
fun(message);
Message<Banana> message2 = new Message<>();
message2.setMessage(new Banana());
fun(message2);
}
// 此时使用通配符"?"描述的是它可以接收任意类型,但是由于不确定类型,所以无法修改
public static void fun(Message<? extends Fruit> temp) {
//temp.setMessage(new Banana()); //仍然无法修改!
//temp.setMessage(new Apple()); //仍然无法修改!
System.out.println(temp.getMessage());
}
}
此时无法在fun函数中对temp进行添加元素,因为temp接收的是Fruit和他的子类,此时存储的元素应该是哪个子
类无法确定。所以添加会报错!但是可以获取元素。、
通配符的上界,不能进行写入数据,只能进行读取数据。
<? super 下界>
<? super Integer>//代表 可以传入的实参的类型是Integer或者Integer的父类类型
class Food {
}
class Fruit extends Food {
}
class Apple extends Fruit {
}
class Plate<T> {
private T plate;
public T getPlate() {
return plate;
}
public void setPlate(T plate) {
this.plate = plate;
}
}
public class TestDemo {
public static void main(String[] args) {
Plate<Fruit> plate1 = new Plate<>();
plate1.setPlate(new Fruit());
fun(plate1);
Plate<Food> plate2 = new Plate<>();
plate2.setPlate(new Food());
fun(plate2);
}
public static void fun(Plate<? super Fruit> temp) {
// 此时可以修改!!添加的是Fruit 或者Fruit的子类
temp.setPlate(new Apple());//这个是Fruit的子类
temp.setPlate(new Fruit());//这个是Fruit的本身
//Fruit fruit = temp.getPlate(); 不能接收,这里无法确定是哪个父类
System.out.println(temp.getPlate());//只能直接输出
}
}
通配符的下界,不能进行读取数据,只能写入数据。
上界和下界一个是只能读取不能写入 一个是只能写入不能读取 该如何理解呢?
此时Fruit就是树的顶端 是所有类的父类 所以Fruit可以接受所有类型的类 所以此时可以接收数据
但是此时无法修改类型 因为我们不知道传入的是什么类型 如果我们传入一个Apple类型 但是我们此时修改为Banana类型一定会出错 因为此时他们不是子类和父类的关系
此时我们就不可以接收元素 因为如果我们传入的是Fruit 但是要求我们接受Food类 此时就会报错 因为我们不能用子类就收父类的实例
但是此时我们就可以修改元素 因为无论是Apple还是Banana 都是 Fruit的子类 那么也一定是Fruit的父类的子类 此时可以修改