Day 22 | 235. Lowest Common Ancestor of a BST | 701. Insert into a BST | 450. Delete Node in a BST

Day 1 | 704. Binary Search | 27. Remove Element | 35. Search Insert Position | 34. First and Last Position of Element in Sorted Array
Day 2 | 977. Squares of a Sorted Array | 209. Minimum Size Subarray Sum | 59. Spiral Matrix II
Day 3 | 203. Remove Linked List Elements | 707. Design Linked List | 206. Reverse Linked List
Day 4 | 24. Swap Nodes in Pairs| 19. Remove Nth Node From End of List| 160.Intersection of Two Lists
Day 6 | 242. Valid Anagram | 349. Intersection of Two Arrays | 202. Happy Numbe | 1. Two Sum
Day 7 | 454. 4Sum II | 383. Ransom Note | 15. 3Sum | 18. 4Sum
Day 8 | 344. Reverse String | 541. Reverse String II | 替换空格 | 151.Reverse Words in a String | 左旋转字符串
Day 9 | 28. Find the Index of the First Occurrence in a String | 459. Repeated Substring Pattern
Day 10 | 232. Implement Queue using Stacks | 225. Implement Stack using Queue
Day 11 | 20. Valid Parentheses | 1047. Remove All Adjacent Duplicates In String | 150. Evaluate RPN
Day 13 | 239. Sliding Window Maximum | 347. Top K Frequent Elements
Day 14 | 144.Binary Tree Preorder Traversal | 94.Binary Tree Inorder Traversal| 145.Binary Tree Postorder Traversal
Day 15 | 102. Binary Tree Level Order Traversal | 226. Invert Binary Tree | 101. Symmetric Tree
Day 16 | 104.MaximumDepth of BinaryTree| 111.MinimumDepth of BinaryTree| 222.CountComplete TreeNodes
Day 17 | 110. Balanced Binary Tree | 257. Binary Tree Paths | 404. Sum of Left Leaves
Day 18 | 513. Find Bottom Left Tree Value | 112. Path Sum | 105&106. Construct Binary Tree
Day 20 | 654. Maximum Binary Tree | 617. Merge Two Binary Trees | 700.Search in a Binary Search Tree
Day 21 | 530. Minimum Absolute Difference in BST | 501. Find Mode in Binary Search Tree | 236. Lowes

Directory

  • LeetCode 235. Lowest Common Ancestor of a Binary Search Tree
  • LeetCode 701. Insert into a Binary Search Tree
  • LeetCode 450. Delete Node in a BST


LeetCode 235. Lowest Common Ancestor of a Binary Search Tree

Question Link

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
        else if(root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
        else return root;
    }  
}
  • Search the tree from top to bottom. If a node’s value is between p and q, this node is the lowest common ancestor of BST.

LeetCode 701. Insert into a Binary Search Tree

Question Link

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if(root == null) 
            return new TreeNode(val);

        if(root.val > val) 
            root.left = insertIntoBST(root.left, val);
        else if(root.val < val) 
            root.right = insertIntoBST(root.right, val);
        return root;
    }
}
  • In the iteration process, we found a proper position if the current node is null. At this time, we should create a node with val and return it directly.

LeetCode 450. Delete Node in a BST

Question Link

class Solution {
    public TreeNode deleteNode(TreeNode root, int key) {
        // 1、The node to delete wasn't found
        if(root == null) return null;
        if(root.val == key){
            // 2、The node to delete is the leaf node.
            if(root.left == null && root.right == null)
                return null;
            // 3、The node to delete has the left node and doesn't have the right node.
            else if(root.left != null && root.right == null)
                return root.left;
            // 4、The node to delete has the right node and doesn't have the left node.
            else if(root.left == null && root.right != null)
                return root.right;
            // 5、The node to delete has the right and left nodes.
            else{
                TreeNode cur = root.right;
                // Find the left most node
                while(cur.left != null)
                    cur = cur.left;
                // Move the left subtree
                cur.left = root.left;
                // Delete the current node
                root = root.right;
                return root;
            }
        }
        if(root.val > key) root.left = deleteNode(root.left, key);
        if(root.val < key) root.right = deleteNode(root.right, key);
        return root;
    }
}
  • We need to handle the following five situations:
    • 1、The node to delete wasn’t found.
    • 2、The node to delete is the leaf node.
    • 3、The node to delete has the left node and doesn’t have the right node.
    • 4、The node to delete has the right node and doesn’t have the left node.
    • 5、The node to delete has the right and left nodes.

你可能感兴趣的:(LeetCode,leetcode)