- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- PettingZoo:多智能体强化学习的标准API
资源存储库
多智能体强化学习人工智能深度学习
PettingZoo:AStandardAPIforMulti-AgentReinforcementLearningPettingZoo:多智能体强化学习的标准API目录Abstract摘要1Introduction1介绍2BackgroundandRelatedWorks2背景及相关工作2.1PartiallyObservableStochasticGamesandRLlib2.1部分可观察随机
- 神经网络架构搜索
IJCAST主编
进化计算神经网络架构人工智能
InternationalJournalofComplexityinAppliedScienceandTechnology,投稿网址:https://www.inderscience.com/jhome.php?jcode=ijcast,发表论文不收取任何费用,论文平均审稿25天内即可录用。1.神经网络架构搜索方法分类当前,神经网络架构搜索的方法主要可以归纳为以下三类:a.基于强化学习的NAS方法
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- 大模型RLHF强化学习笔记(一):强化学习基础梳理Part1
Gravity!
大模型笔记大模型LLM算法机器学习强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.1Intro定义:强化学习是一种机器学习方法,需要智能体通过与环境交互学习最优策略基本要素:状态(State):智能体在决策过程中需要考虑的所有相关信息(环境描述)动作(Action):在环境中可以采取的行为策略(Policy):定义了在给定状态下智能体应该选择哪个动作,目标是最大化智能体的长期累积奖
- LLMs基础学习(八)强化学习专题(7)
汤姆和佩琦
NLP学习Actor-Critic算法
LLMs基础学习(八)强化学习专题(7)文章目录LLMs基础学习(八)强化学习专题(7)Actor-Critic算法基础原理算法流程细节算法优缺点分析算法核心总结视频链接:https://www.bilibili.com/video/BV1MQo4YGEmq/?spm_id_from=333.1387.upload.video_card.click&vd_source=57e4865932ea6c
- 强化学习-双臂老虎机
transuperb
强化学习人工智能
本篇文章模拟AI玩两个老虎机,AI需要判断出哪个老虎机收益更大,然后根据反馈调整对于不同老虎机的价值判断,如果把这个看作一个简单的强化学习的话,那么AI就是agent,两个老虎机就是environment,AI首先会对两台老虎机有一个预测值Q,预测哪一个的价值高,然后AI通过策略函数判断应该选择哪个老虎机,进行Action后根据Reward更新每个老虎机的价值Value,然后再进行下一次判断,直到
- ROS2 强化学习:案例与代码实战
芯动大师
ROS2学习目标检测人工智能
一、引言在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(RobotOperatingSystem2)作为新一代机器人操作系统,具有更好的实时性、分布式性能和安全性,为强化学习在机器人领域的应用提供了更坚实的基础。本文将通过一个具体案例,深入探讨ROS2与强化学习的结合应用,并提供相关代码实现。二、案例背景本案例以移动机器
- 解析AI算力网络与通信领域强化学习的算法
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构人工智能网络算法ai
解析AI算力网络与通信领域强化学习的算法:从"快递员找路"到"智能网络大脑"关键词:AI算力网络、通信领域、强化学习、马尔可夫决策、资源调度摘要:本文将用"快递物流系统"的类比,带您理解AI算力网络与通信领域如何通过强化学习实现智能决策。我们会从核心概念讲起,逐步拆解强化学习在网络资源调度中的算法原理,结合Python代码实战,最后探索其在5G/6G、边缘计算等场景的应用。即使您没学过复杂数学,也
- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 强化学习实战:从 Q-Learning 到 PPO 全流程
荣华富贵8
程序员的知识储备2程序员的知识储备3人工智能算法机器学习
1引言随着人工智能的快速发展,强化学习(ReinforcementLearning,RL)凭借其在复杂决策与控制问题上的卓越表现,已成为研究与应用的前沿热点。本文旨在从经典的Q-Learning算法入手,系统梳理从值迭代到策略优化的全流程技术细节,直至最具代表性的ProximalPolicyOptimization(PPO)算法,结合理论推导、代码实现与案例分析,深入探讨强化学习的核心原理、算法演
- 基于CTDE MAPPO的无线通信资源分配强化学习实现
pk_xz123456
仿真模型深度学习算法lstm人工智能rnn深度学习开发语言
基于CTDEMAPPO的无线通信资源分配强化学习实现摘要本文提出了一种基于集中训练分散执行(CTDE)框架的多智能体近端策略优化(MAPPO)方法,用于解决无线通信网络中的资源分配问题。我们设计了一个多基站协作环境,其中每个基站作为独立智能体,通过分布式决策实现网络吞吐量最大化。实验结果表明,MAPPO算法在频谱效率和用户公平性方面显著优于传统启发式算法。1.引言1.1研究背景随着5G/6G通信技
- 强化学习系列——PPO算法
lqjun0827
算法深度学习算法人工智能
强化学习系列——PPO算法PPO算法一、背景知识:策略梯度&Advantage二、引入重要性采样(ImportanceSampling)三、PPO-Clip目标函数推导✅四、总结公式(一图总览)参考文献PPO示例代码实现补充内容:重要性采样一、问题背景:我们想估计某个期望❗问题:二、引入重要性采样(ImportanceSampling)三、离散采样形式(蒙特卡洛估计)四、标准化的重要性采样五、在强
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- 医疗AI新势力:自演进多智能体MAS的进击之路
Allen_Lyb
医疗高效编程研发人工智能健康医疗机器学习架构大数据
医疗AI新势力:自演进多智能体MAS的进击之路往期相关文章:Python在开放式医疗诊断多智能体系统中的深度应用与自动化分析基于多智能体强化学习的医疗AI中RAG系统程序架构优化研究自演进多智能体在医疗临床诊疗动态场景中的应用医疗AI的新变革在数字化与智能化飞速发展的时代,人工智能(AI)已经逐渐渗透到医疗领域的各个角落,成为推动医疗行业变革的重要力量。从疾病的早期诊断到个性化治疗方案的制定,从医
- 无线通信中的多智能体强化学习:基于CTDE-MAPPO的功率控制优化
pk_xz123456
仿真模型深度学习算法算法人工智能制造
无线通信中的多智能体强化学习:基于CTDE-MAPPO的功率控制优化摘要本文提出了一种基于集中训练分布式执行(CTDE)框架的多智能体近端策略优化(MAPPO)算法,用于解决无线通信网络中的分布式功率控制问题。通过将多个基站建模为协作智能体,我们设计了一个多智能体强化学习系统,能够在复杂动态环境中实现全局网络效用的优化。本文详细介绍了系统架构、算法实现、实验设置以及性能评估,展示了MAPPO在5G
- 传统蒙特卡洛(Monte Carlo, MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大
强化学习曾小健
人工智能
传统蒙特卡洛(MonteCarlo,MC)方法在强化学习中直接把整条回报序列当作“真值”来估计价值函数,通常配合表格化存储,因此无需环境模型且估计无偏,但只能处理有限状态-动作空间且方差较大medium.comanalyticsvidhya.comincompleteideas.net。“深度蒙特卡洛”(DeepMonteCarlo,DMC)则保留“按回报直接更新”的思想,却用深度网络来逼近$Q(
- 使用Simulink结合MATLAB进行基于强化学习控制下的动态滤波器参数调节系统的仿真
amy_mhd
matlab开发语言
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:准备强化学习环境步骤3:训练强化学习代理步骤4:创建Simulink模型步骤5:添加信号源步骤6:合并信号步骤7:导入强化学习代理步骤8:设计滤波器步骤9:可视化结果步骤10:连接各模块步骤11:设置仿真参数步骤12:运行仿真并分析结果四、总结在现代信号处理领域,动态调整滤波器参数以适应不断变化的环境条件是
- 强化学习(Reinforcement Learning, RL)概览
MzKyle
人工智能人工智能强化学习机器学习机器人
一、强化学习的核心概念与定位1.定义强化学习是机器学习的分支,研究智能体(Agent)在动态环境中通过与环境交互,以最大化累积奖励为目标的学习机制。与监督学习(有标注数据)和无监督学习(无目标)不同,强化学习通过“试错”学习,不依赖先验知识,适合解决动态决策问题。2.核心要素智能体(Agent):执行决策的主体,如游戏AI、机器人。环境(Environment):智能体之外的一切,如棋盘、物理世界
- 无监督学习概览
MzKyle
人工智能人工智能无监督学习机器学习
一、无监督学习的本质与定位定义:无监督学习是机器学习的三大范式之一(另外两种为监督学习和强化学习),其核心特点是处理未标注数据,通过算法自动发现数据中的隐藏结构、模式或内在规律。与监督学习依赖"输入-输出"对不同,无监督学习仅以原始数据作为输入,目标是揭示数据的内在组织方式。与其他学习范式的区别:监督学习:依赖标签(如分类、回归任务),学习从输入到输出的映射关系强化学习:通过与环境交互获得奖励信号
- 基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架
pk_xz123456
算法无人机分布式算法matlab人工智能制造开发语言
基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架摘要:低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深度融合分布式部分可观测马尔可夫决策过程(Dec-POMDP)与联邦强化学习(FederatedReinforcementLearning,FRL)
- 空间智能领域,AI人工智能如何大显身手
AI大模型应用之禅
人工智能ai
空间智能领域,AI人工智能如何大显身手关键词:空间智能、人工智能、计算机视觉、地理信息系统、自动驾驶、增强现实、智能城市摘要:本文深入探讨了人工智能在空间智能领域的应用与前景。空间智能作为理解、处理和利用空间信息的能力,正在被AI技术深刻变革。我们将从核心技术原理出发,分析计算机视觉、深度学习、强化学习等技术如何赋能空间智能,探讨其在自动驾驶、智能城市、AR/VR等领域的实际应用,并提供详细的算法
- 动手学强化学习 第10章-Actor-Critic 算法 训练代码
zhqh100
算法深度学习pytorch人工智能
基于Hands-on-RL/第10章-Actor-Critic算法.ipynbatmain·boyu-ai/Hands-on-RL·GitHub理论Actor-Critic算法修改了警告和报错运行环境DebianGNU/Linux12Python3.9.19torch2.0.1gym0.26.2运行代码Actor-Critic.py#!/usr/bin/envpythonimportgymimpo
- 百度飞桨(PaddlePaddle)案例分享:基于 PaddleOCR 的图像文字提取系统
univerbright
百度paddlepaddle人工智能paddleocr图像文字提取
一、案例背景在实际教学、办公及政务系统中,纸质材料(如手写作文、表格、试卷等)仍广泛存在。为提升信息处理效率,采用OCR(OpticalCharacterRecognition)技术将图像中的文字提取为可编辑文本已成为刚需。本项目基于开源深度学习库PaddleOCR,构建了一个轻量级的图像文字识别工具,能够自动识别图像中的中文文本,并提供置信度评估和可视化支持。该工具特别适用于作业扫描图像中的内容
- Agent 处理流程
成都犀牛
人工智能大模型Agent深度学习神经网络pythonAgent
Agent源于研究行为的强化学习,而大模型源于研究知识的深度学习多数情况下认为该系统中会存在下面的角色或名词用户(另一个人)上下文(记忆)变量(记忆)提示词(沟通方式)工具(手臂)大模型(大脑)这个图将着重表现Agent的决策循环,这是其与普通RAG流程最主要的区别。Agent核心工作流示意图用户提示词✏️Agent大模型上下文️变量%%工具️用户交互层AI核心层数据层工具层发送请求用户输入原始指
- 智能化设计工具链:深度学习与强化学习的全流程融合架构
一、技术架构设计智能化设计工具链的构建需要整合参数化建模、代理模型训练、强化学习优化与多物理场工艺仿真四大模块,形成从设计到制造的闭环系统。典型流程如下:
- 自适应限流算法实战
双囍菜菜
#Go高吞吐架构算法Golang
自适应限流算法实战文章目录自适应限流算法实战一、限流算法演进史:从静态到自适应1.1传统限流算法的致命缺陷1.2自适应限流的革命性突破二、自适应限流核心指标体系2.1黄金四维指标2.2指标融合公式三、经典自适应算法解析3.1TCPBBR带宽自适应算法核心限流应用3.2NetflixConcurrencyLimit梯度下降策略智能探针机制四、AI赋能的智能限流4.1LSTM预测模型架构4.2强化学习
- 从代码学习深度强化学习 - REINFORCE 算法 PyTorch版
飞雪白鹿€
深度强化学习pytorch版pytorchDRL
文章目录前言**一、理论基础:什么是策略梯度?****1.1基于价值vs.基于策略****1.2策略梯度(PolicyGradient)****1.3REINFORCE算法:蒙特卡洛策略梯度****1.4REINFORCE算法流程****二、PyTorch代码实践****2.1环境与辅助函数****2.2核心算法实现****2.3训练与结果****总结**前言欢迎来到“从代码学习深度强化学习”系列
- 生成本地 微调 +强化学习 qwen3-4b 研究搭建流程步骤
行云流水AI笔记
人工智能
在本地微调并应用强化学习(RL)对Qwen-3-4B模型进行研究和搭建,是一个复杂但可行的过程。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个阶段。一、环境准备硬件要求GPU:至少需要多块高性能GPU(如NVIDIAA100或V100),因为Qwen-3-4B模型参数量大,内存需求高。内存:建议至少128GBRAM,以确保数据处理和模型加载的流畅性。存储:高速SS
- 【无标题】
行云流水AI笔记
人工智能
在本地对Qwen-3-4B模型进行微调,并结合强化学习(RL)以提高其从自然语言(TXT)到结构化查询语言(SQL)的转换能力(即TXT2SQL),是一个复杂但非常有价值的任务。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个方面。一、项目概述目标:通过微调和强化学习提升Qwen-3-4B模型在TXT2SQL任务上的表现,使其能够更准确地将自然语言查询转换为相应的S
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在