- 国产(以麒麟为例)环境,离线安装docker、docker-compose、milvus
般若-波罗蜜
1024程序员节dockerpython深度学习pytorch
文章目录一、专有名词解释1.主流cpu2.操作系统二、安装docker2.读入数据总结docker错误解决方法一、专有名词解释1.主流cpu架构(指令集)x86(早期intel开发的32位指令集)x64(CISC)1)AMD64--------AMD首先开发出64位指令集,向下兼容32位2)x86_64--------intel使用AMD的64位指令集,换了个名字而已ARMAArch64为ARMv
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 安装milvus数据库
weixin_44080967
milvus数据库
#创建保存目录mkdir-pdocker_images_backupcddocker_images_backup#1.保存Milvus镜像dockersave-omilvus_latest.tarmilvusdb/milvus:latest#2.保存MinIO镜像dockersave-ominio_latest.tarminio/minio:latest#3.保存ETCD镜像dockersave-
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- 新手如何本地构建Milvus向量数据库
BeMiracle~
milvus数据库
简单构建一个Milvus数据库一、前言:什么是Milvus数据库二、安装Docker官方下载地址:配置Docker三、安装Milvus四、Milvus关键概念介绍1、首先创建数据库2、然后创建逻辑定义3、添加字段4、创建集合collection5、建立索引(有索引才能查询数据)6、插入更新删除数据7、查询数据(查询limit个相似向量)一、前言:什么是Milvus数据库Milvus是一款开源向量
- Milvus数据库创建
cts618
Milvus分布式向量数据库数据库milvusoracle
URL:https://milvus.io/docs/zh/manage_databases.mdfrompymilvusimportMilvusClient"""URL:https://milvus.io/docs/zh/manage_databases.md"""#创建数据库client=MilvusClient(uri="",token="")client.create_database(d
- Milvus知识库创建
importconfigparserimporttimeimportrandomfrompymilvusimportMilvusClientfrompymilvusimportDataTypecfp=configparser.RawConfigParser()cfp.read('config.ini')milvus_uri=cfp.get('example','uri')token=cfp.get
- Milvus中 Collections 级多租户 和 分区级多租户 的区别
背太阳的牧羊人
人工智能RAG优化方法milvus向量数据库
原文链接图片内容中。1,所有租户共用一个Collection:所有租户共享一个Collection,租户特定字段用于过滤。2,每个租户一个分区:租户共享一个Collections,但他们的数据存储在不同的分区中。我们可以通过为每个租户分配一个专用分区来隔离数据。3,基于PartitionKey的多租户:这是一种可扩展性更强的方案,其中单个Collections使用分区Key来区分租户。它们看起来相
- Milvus 资源调度系统的核心部分:「查询节点」「资源组」「数据库」
背太阳的牧羊人
milvus数据库milvus数据库
Milvus的资源管理分为三层:查询节点、资源组和数据库。查询节点:处理查询任务的组件。它在物理机或容器(如Kubernetes中的pod)上运行。资源组:查询节点的集合,充当逻辑组件(数据库和Collections)与物理资源之间的桥梁。您可以将一个或多个数据库或集合分配给一个资源组。下面我将详细解释这三个概念。总体图(打个比方)你可以把整个Milvus系统想象成一个「大型图书馆系统」,里头有:
- 向量数据库milvus中文全文检索取不到数据的处理办法
--勇
数据库milvus全文检索
检查中文分词配置Milvus2.5+支持原生中文全文检索,但需显式配置中文分词器:创建集合时指定分词器类型为chinesepythonschema.add_field(field_name="text",datatype=DataType.VARCHAR,max_length=65535,enable_analyzer=True,analyzer_params={"type":"chinese"}
- pymilvus.exceptions.MilvusException: <MilvusException: (code=0, message=attempt #0: channel=by-dev-r
Langchain连接AI大模型连接milvus数据库,向milvus同步数据时报错如下:ERROR:ExceptioninASGIapplicationTraceback(mostrecentcalllast):File"/home/devops/.local/lib/python3.10/site-packages/uvicorn/protocols/http/httptools_impl.p
- Milvus向量数据库:处理和分析大规模向量数据
concisedistinct
人工智能milvus数据库向量人工智能机器学习高可用容灾
目录一Milvus概述性能可扩展性易用性二Milvus的核心技术1向量索引HNSWIVFPQ2GPU加速3分布式架构分布式三深入了解Milvus的技术细节1存储机制持久化存储内存存储2数据导入与导出批量导入实时导入3高可用性与容灾机制数据副本自动故障恢复数据备份与恢复四实践中的Milvus1电商平台的图像搜索系统架构性能优化2金融行业的风险控制系统架构成果与展望五结语在当今数据驱动的世界中,处理和
- 局域网访问WSL服务——问题排查笔记
迟三登
linuxwindows
给团队做了一个RAG项目,由于使用的向量数据库是milvus(不支持Windows),以及方便后面项目迁移到服务器,遂开发调试过程中使用的是WSL2。项目在本机上开发调试结束后,由于是给团队使用的,需要局域网内其它设备能够访问这个运行在WSL2上的服务。这次的排查经历相对比较完整,可以作为以后参考的排查清单。目标:允许局域网内的其他设备访问运行在WSL内部的服务。初始环境:Windows主机IP(
- docker 安装 milvus standalone 版本 + attu
Jiangnan_Cai
Linuxdockermilvus数据库
首先,milvus向量数据库和sql类似,有lite版本和standalone版本,就是功能有些阉割:milvuslite的话python直接安装pymilvus就可以用了standalone版本则需要通过docker来进行部署1.安装docker与docker-compose这个在这里就不赘述了,但是需要将docker的源换成国内可用的,经过我测试,针对milvus镜像的下载,国内的下面两个源是
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- CentOS使用docker-compose在线部署milvus服务(超详细)
男孩一泽
milvusCentOS人脸搜索dockercentosmilvus
部署milvus服务(在线部署docker、docker-compose、milvus服务)注意事项:若所有操作在root用户下进行,则无需执行第2步、第4步的第1条、第6步的第1条离线部署适用于内网服务器,比较麻烦,若服务器可以访问外网,参考milvus在线部署版部署步骤在root账户下创建milvus账户执行如下命令useradd-mmilvuspasswdmilvus输入两次密码密码设置成功
- ModaHub魔搭社区:基于 Amazon EKS 搭建开源向量数据库 Milvus
大禹智库
《向量数据库指南》《实战AI智能体》开源数据库milvus向量数据库ModaHubAI模型魔搭社区
目录01前言02架构说明03先决条件04创建EKS集群05部署Milvus数据库06优化Milvus配置07测试Milvus集群08总结01前言生成式AI(GenerativeAI)的火爆引发了广泛的关注,也彻底点燃了向量数据库(VectorDatabase)市场,众多的向量数据库产品开始真正出圈,走进大众的视野。根据IDC的预测,到2025年,超过80%的业务数据将是非结构化的,以文本、图像、音
- Linux CentOS安装Docker和docker-compose和milvus
数据叨叨叨
linuxcentosdocker
一、LinuxCentOS安装Docker在CentOS上安装Docker与在Ubuntu上类似,但有一些微小的差异。以下是在CentOS上安装Docker的步骤:更新系统:确保系统处于最新状态。使用以下命令更新软件包列表:sudoyumupdate安装依赖包:安装一些必要的软件包,以便能够通过HTTPS使用存储库:sudoyuminstall-yyum-utilsdevice-mapper-pe
- Docker【部署 04】Docker Compose下载安装及实例Milvus Docker compose(CPU)使用说明分享_docker compose 下载
2401_84301352
dockermilvuseureka
1.Compose说明DockerCompose是一个用于定义和管理多个Docker容器的工具,旨在简化容器化应用程序的开发、部署和管理过程。通过DockerCompose,您可以使用一个单独的配置文件(通常是docker-compose.yml文件)来描述应用程序中涉及的多个容器、网络设置、存储卷等。DockerCompose官网安装说明文档。1.1OverviewofinstallingDoc
- 使用 Docker Compose 安装 Milvus(单机版)
openlabx.org.cn
dockermilvus向量数据库人工智能
1.创建专用目录并进入mkdirmilvus-standalone&&cdmilvus-standalone2.下载docker-compose.yml文件使用官方提供的配置文件(以Milvusv2.3.3为例):wgethttps://github.com/milvus-io/milvus/releases/download/v2.3.3/milvus-standalone-docker-com
- Milvus/ES 插入方案对比
风筝超冷
milvuspython开发语言
在Python中加载它并打印一个示例嵌入的维度。python-c"fromsentence_transformersimportSentenceTransformer;model=SentenceTransformer('/root/.cache/modelscope/hub/models/Qwen/Qwen3-Embedding-0.6B');example_embedding=model.en
- 大模型联网查询,以及milvus向量数据库的使用
菜鸡且互啄69
langchainpythonRAG
首先先不要回答,根据用户的提问先进行联网搜索#根据用户输入的问题,调用SerperAPI执行联网检索,返回search_top_k个相关的链接search_results=awaitsearch(query,search_top_k)asyncdefsearch(query,num,locale=''):"""定义一个异步函数,用于发起SerperAPI的实时GoogleSearch"""#初始化
- LangChain 与 Milvus 的碰撞:全文检索技术实践
金汐脉动 | PulseTide
禅与LangChainlangchainmilvus全文检索
一、全文搜索全文搜索是一种通过匹配文本中特定关键词或短语来检索文档的传统方法。它根据词频等因素计算出的相关性分数对结果进行排序。语义搜索更善于理解含义和上下文,而全文搜索则擅长精确的关键词匹配,因此是语义搜索的有益补充。BM25算法被广泛用于全文搜索的排序,并在检索增强生成(RAG)中发挥着关键作用。Milvus2.5引入了使用BM25的本地全文搜索功能。这种方法将文本转换为代表BM25分数的稀疏
- Centos7.9上离线安装milvus2.2.9
云游
milvus大模型milvus人工智能
1.版本说明etcd:v3.5.5minio:RELEASE.2023-03-20T20-16-18Zmilvus:v2.2.92.创建milvus文件夹并上传离线包#mkdirmilvus#cdmilvus/docker-compose.yml、etcd.tar、milvus.tar、minio.tar3.加载3个镜像#dockerload-ietcd.tar#dockerload-iminio
- 从MaxCompute到Milvus:通过DataWorks进行数据同步,实现海量数据高效相似性检索
在如今大数据和人工智能应用场景中,企业往往需要对存储在云数据仓库(如云原生大数据计算服务MaxCompute)中的大规模结构化数据进行向量化处理,以支持高效的向量检索和相似性分析等AI应用。阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、
- Faiss vs Milvus 深度对比:向量数据库技术选型指南
FaissvsMilvus深度对比:向量数据库技术选型指南引言:向量数据库的时代抉择在AI应用爆发的今天,企业和开发者面临着如何存储和检索海量向量数据的重大技术选择。作为当前最受关注的两大解决方案,Faiss和Milvus代表了两种不同的技术路线。本文将从架构设计到应用场景进行全面对比,助您做出明智的技术决策。一、核心定位差异维度FaissMilvus性质算法库完整数据库系统开发方Facebook
- pymilvus
老兵发新帖
人工智能
一.pymilvus介绍pymilvus是什么?pymilvus是连接和操作Milvus向量数据库的PythonSDK,用于处理大规模向量数据的存储、索引和搜索。️Milvus向量数据库什么是Milvus?专业向量数据库-专门为向量数据设计的数据库系统☁️云原生架构-支持分布式部署和水平扩展⚡高性能-基于FAISS、Annoy等多种向量索引引擎pymilvus基本使用安装pipinstallpym
- Milvus 启动失败排查案例:Etcd 未启动引发的 Goroutine 堆栈分析
gs80140
各种问题milvusetcd数据库
目录Milvus启动失败排查案例:Etcd未启动引发的Goroutine堆栈分析背景说明现象解读原因定位️解决方案✅步骤一:检查Etcd服务状态✅步骤二:重新启动Etcd✅步骤三:再次启动Milvus总结建议与实践Milvus启动失败排查案例:Etcd未启动引发的Goroutine堆栈分析在实际部署向量数据库Milvus的过程中,启动失败的情况并不少见。本文通过一次真实案例,解析如何通过gorou
- Milvus attu - docker 使用 及 版本兼容
丽英y
实践笔记milvusdockerattu数据库向量rag
文章目录版本查看attu和milvus的兼容性Docker加载attudocker合并到Milvus文件管理使用dockercompose挂在Milvus,登录attu出现报错:Error:FailedtoconnecttoMilvus:Error:1CANCELLED:Callcancelled于是检查兼容问题版本查看Milvus版本发布:https://github.com/milvus-io
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多