有序性

重排序

在执行程序时为了提高性能,编译器和处理器常常会对指令做重排序。重排序分三种类型:

  1. 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
  2. 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism,
    ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
  3. 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

从java源代码到最终实际执行的指令序列,会分别经历下面三种重排序:

这里写图片描述

上述的1属于编译器重排序,2和3属于处理器重排序。这些重排序都可能会导致多线程程序出现内存可见性问题。

  1. 对于编译器,JMM的编译器重排序规则会禁止特定类型的编译器重排序(不是所有的编译器重排序都要禁止)。
  2. 列表内容对于处理器重排序,JMM的处理器重排序规则会要求java编译器在生成指令序列时,插入特定类型的内存屏障(memory barriers,intel称之为memory fence)指令,通过内存屏障指令来禁止特定类型的处理器重排序(不是所有的处理器重排序都要禁止)。

JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。

数据依赖性

如果两个操作访问同一变量,且这两个操作中有一个为写操作,此时两个操作之间就存在数据依赖性。分下列上种:

名称 代码示例 说明
写后读 a=1;
b=a;
写一个变量之后,再读一个变量
写后写 a=1;
a=2;
写一个变量之后,再写这个变量
读后写 a=b;
b=1;
读一个变量之后,再写这个变量


  编译器和处理器重排序不会改变存在数据依赖关系的两个操作的执行顺序。 反过来讲,如果两个操作不存在数据依赖性,则这些操作可能会被编译器和处理器重排序。

  这里所说的数据依赖性仅针对单个处理器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器和处理器考虑。

重排序示例

double pi  = 3.14;    //A
double r   = 1.0;     //B
double area = pi * r * r; //C

上面三个操作的数据依赖关系如下图所示:

如上图所示,A和C之间存在数据依赖关系,同时B和C之间也存在数据依赖关系。因此在最终执行的指令序列中,C不能被重排序到A和B的前面(C排到A和B的前面,程序的结果将会被改变)。但A和B之间没有数据依赖关系,编译器和处理器可以重排序A和B之间的执行顺序。下图是该程序的两种执行顺序:

重排序对多线程的影响

class ReorderExample {
    int a = 0;
    boolean flag = false;

    public void writer() {
        a = 1;                   //1
        flag = true;             //2
    }

    Public void reader() {
        if (flag) {              //3
            int i =  a * a;      //4
            ……
        }
    }
}

  flag变量是个标记,用来标识变量a是否已被写入。这里假设有两个线程A和B,A首先执行writer()方法,随后B线程接着执行reader()方法。线程B在执行操作4时,能否看到线程A在操作1对共享变量a的写入?答案是:不一定能看到。
  
  由于操作1和操作2没有数据依赖关系,编译器和处理器可以对这两个操作重排序;同样,操作3和操作4没有数据依赖关系,编译器和处理器也可以对这两个操作重排序。让我们先来看看,当操作1和操作2重排序时,可能会产生什么效果?请看下面的程序执行时序图:
  

  如上图所示,操作1和操作2做了重排序。程序执行时,线程A首先写标记变量flag,随后线程B读这个变量。由于条件判断为真,线程B将读取变量a。此时,变量a还根本没有被线程A写入,在这里多线程程序的语义被重排序破坏了!

  下面再让我们看看,当操作3和操作4重排序时会产生什么效果(借助这个重排序,可以顺便说明控制依赖性)。下面是操作3和操作4重排序后,程序的执行时序图:
  
  

  在程序中,操作3和操作4存在控制依赖关系。当代码中存在控制依赖性时,会影响指令序列执行的并行度。为此,编译器和处理器会采用猜测(Speculation)执行来克服控制相关性对并行度的影响。以处理器的猜测执行为例,执行线程B的处理器可以提前读取并计算a*a,然后把计算结果临时保存到一个名为重排序缓冲(reorder buffer ROB)的硬件缓存中。当接下来操作3的条件判断为真时,就把该计算结果写入变量i中。

  从图中我们可以看出,猜测执行实质上对操作3和4做了重排序。重排序在这里破坏了多线程程序的语义!

重排序对同步代码块的影响

  在JMM(Java Memory Model)中,同步代码块里的代码是可以重排序的,但不允许代码块里的代码溢出到临界区之外,那样会破坏监视器的语义。

总结  

  在单线程程序中,对存在控制依赖的操作重排序,不会改变执行结果(这也是as-if-serial语义允许对存在控制依赖的操作做重排序的原因);但在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。

你可能感兴趣的:(并发,java,重排序,有序性)