CentOS7安装nvidia驱动并在docker容器中使用GPU

1.install NVIDIA Driver

a. 需要先确保kernel-devel和kernel-headers包的版本和当前kernel版本一致

如果不一致需要卸载高版本的kernel-devel包或者升级kernel,这里建议降低kernel-devel的版本。
如下所示通过yum安装的kernel-devel是3.10.0-1160版本的,然而kernel是3.10.0-1127版本的

###安装 kernel-devel
[jenkins_user@chemical_122 gpu_related]$ sudo yum install epel-release -y
###这里gcc和gcc-c++的版本比较低,对后面编译有影响,如果要做流水线编译环境,得编译安装高版本gcc,一般部署环境不需要
[jenkins_user@chemical_122 gpu_related]$ sudo yum install -y net-tools telnet autoconf libtool make gcc gcc-c++ kernel-devel

[root@chemical_122 ~]# rpm -qa | grep kernel-
kernel-tools-libs-3.10.0-1127.el7.x86_64
kernel-devel-3.10.0-1160.11.1.el7.x86_64
kernel-headers-3.10.0-1160.11.1.el7.x86_64
kernel-tools-3.10.0-1127.el7.x86_64
kernel-3.10.0-1127.el7.x86_64
[root@chemical_122 ~]# uname -a
Linux chemical_122 3.10.0-1127.el7.x86_64 #1 SMP Tue Mar 31 23:36:51 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

###下载对应版本的kernel-devel的rpm包,并安装 
[root@chemical_122 ~]# yum remove -y kernel-devel
[root@chemical_122 software]# wget https://mirrors.tuna.tsinghua.edu.cn/centos-vault/7.8.2003/os/x86_64/Packages/kernel-devel-3.10.0-1127.el7.x86_64.rpm
[root@chemical_122 software]# wget https://mirrors.tuna.tsinghua.edu.cn/centos-vault/7.8.2003/os/x86_64/Packages/kernel-headers-3.10.0-1127.el7.x86_64.rpm
[root@chemical_122 software]# rpm -ivh kernel-devel-3.10.0-1127.el7.x86_64.rpm
[root@chemical_122 software]# rpm -ivh kernel-headers-3.10.0-1127.el7.x86_64.rpm
b. 禁用默认的驱动并重启安装NVIDIA驱动
[jenkins_user@chemical_122 gpu_related]$ wget https://cn.download.nvidia.cn/XFree86/Linux-x86_64/430.14/NVIDIA-Linux-x86_64-430.14.run 
[jenkins_user@chemical_122 gpu_related]$ chmod ug+x ./NVIDIA-Linux-x86_64-430.14.run
[jenkins_user@chemical_122 gpu_related]$ sudo ./NVIDIA-Linux-x86_64-430.14.run
Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 430.14..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

###在图形化操作中禁用默认的驱动
[jenkins_user@chemical_122 gpu_related]$ cd /etc/modprobe.d/
[jenkins_user@chemical_122 modprobe.d]$ cat nvidia-installer-disable-nouveau.conf
# generated by nvidia-installer
blacklist nouveau
options nouveau modeset=0
[root@chemical_122 ~]# ls -altr /boot/initramfs-$(uname -r).img
-rw-------. 1 root root 52200101 Dec 21 13:54 /boot/initramfs-3.10.0-1127.el7.x86_64.img
[root@chemical_122 ~]# mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
[root@chemical_122 ~]# dracut -v /boot/initramfs-$(uname -r).img $(uname -r)

[root@chemical_122 ~]# reboot

[jenkins_user@chemical_122 gpu_related]$ sudo ./NVIDIA-Linux-x86_64-430.14.run
Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 430.14..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

2. install CUDA

[root@chemical_122 gpu_related]# wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
[root@chemical_122 gpu_related]# chmod u+x ./cuda_11.0.3_450.51.06_linux.run
[root@chemical_122 gpu_related]# ./cuda_11.0.3_450.51.06_linux.run
===========
= Summary =
===========

Driver:   Installed
Toolkit:  Installed in /usr/local/cuda-11.0/
Samples:  Installed in /root/, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-11.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-11.0/lib64, or, add /usr/local/cuda-11.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.0/bin
To uninstall the NVIDIA Driver, run nvidia-uninstall
Logfile is /var/log/cuda-installer.log
加入到/etc/profile末尾

vim /etc/profile

export PATH=/usr/local/cuda-11.0/bin:$PATH
export CUDA_HOME=/usr/local/cuda-11.0
export CUDA_TOOLKIT_ROOT_DIR=$CUDA_HOME
export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:/usr/local/lib:$LD_LIBRARY_PATH

3. 确认安装成功

[root@chemical_122 harbor]# nvidia-smi
Tue Jan 12 16:01:46 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06    Driver Version: 450.51.06    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0 Quadro P4000        Off  | 00000000:3B:00.0 Off |                  N/A |
| 42%   31C    P0    31W / 105W |      0MiB /  8119MiB |      4%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

4. docker环境安装Nvidia-container-runtime

对于已经安装好docker的CentOS系统
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.repo | sudo tee /etc/yum.repos.d/nvidia-container-runtime.repo
yum install nvidia-container-runtime -y
github.io (nvidia.github.io)无法访问问题及解决

由于DNS污染,导致某些URL被墙

解决办法 : 修改DNS服务器

vim /etc/resolv.conf

# nameserver 192.168.0.112
nameserver 114.114.114.114
修改docker配置,使用nvidia runc作为docker runtime
vim /etc/docker/daemon.json
{
  "log-level": "warn",
  "selinux-enabled": false,
  "runtimes": {
    "nvidia": {
      "path": "nvidia-container-runtime",
      "runtimeArgs": []
    }
  },
  "registry-mirrors": [
    "https://pqbap4ya.mirror.aliyuncs.com",
    "https://1nj0zren.mirror.aliyuncs.com",
    "https://docker.mirrors.ustc.edu.cn",
    "http://f1361db2.m.daocloud.io",
    "https://registry.docker-cn.com"
  ],
  "default-shm-size": "128M",
  "max-concurrent-downloads": 10,
  "max-concurrent-uploads": 5,
  "oom-score-adjust": -1000,
  "debug": false,
  "live-restore": true,
  "exec-opts": [
    "native.cgroupdriver=systemd"
  ],
  "log-driver": "json-file",
  "log-opts": {
    "max-size": "100m",
    "max-file": "10"
  },
  "oom-score-adjust": -1000,
  "storage-driver": "overlay2",
  "storage-opts": [
    "overlay2.override_kernel_check=true"
  ]
}
重启docker并验证
systemctl restart docker
docker info

看到关键信息
Runtimes: io.containerd.runc.v2 io.containerd.runtime.v1.linux nvidia runc

5. 下载Nvidia镜像并验证

docker pull nvidia/cuda:11.0-base-ubuntu18.04
docker run -it --gpus all nvidia/cuda:11.0-base-ubuntu18.04 bash

你可能感兴趣的:(Linux,docker,cuda,gpu)