三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)

0.任务描述

  • 背景:从端面拍摄大型圆筒工件,该工件周向尺寸大于相机视野,只能拍摄到1/3左右的圆周,且无法保证相机与端面垂直拍摄
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第1张图片

  • 任务:需要拟合圆周与轴线位置

  • 难点:三维圆拟合与检测都很复杂,没有方便可用的成熟方案,最小二乘法既无法处理高维情况,也会受异常点干扰,RANSAC的检测迭代次数过多,选点的随机性过大

  • 基本思路:通过深度信息过滤干扰平面,使用RANSAC算法检测最大平面作为圆筒端面,在该端面上随机选取一个点作为初始化圆心,以最小化所有点到圆心的距离差作为优化目标,求解最优化问题,得到圆心和半径,结合端面法向量可以求出轴线方程。

  • 相关数据:深度信息过滤后的点云数据下载

1.加载显示原始点云

  • 目录结构:数据都存在duanmian 文件夹下,本文用力为第三次拍摄,存在3文件夹下:
file = '3'
file_before = 'duanmian/'
pcd = o3d.io.read_point_cloud(file_before + file + '/point_cloud_00000.ply')
  • 原始点云全白,与显示的背景色重合无法有效可视化,所以需要改变颜色,这里改为了全黑
points = np.array(pcd.points)
colors = np.zeros(np.array(pcd.points).shape[0])
pcd.colors = o3d.utility.Vector3dVector(np.zeros(np.array(pcd.colors).shape))
o3d.visualization.draw_geometries([pcd])

三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第2张图片

2.点云预处理

  • 均匀降采样:保证点的位置准确度的同时方便存储与后续计算
pcd = pcd.uniform_down_sample(every_k_points = 20)
o3d.visualization.draw_geometries([pcd])

三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第3张图片

  • 存储降采样后的原始点云,方便后期对比与效果展示:
o3d.io.write_point_cloud(file_before + file + '/old.ply', pcd)
  • RANSAC平面检测分割(详细解释参考这里):
plane_model, inliers = pcd.segment_plane(distance_threshold=3 * 1e-3,
                                         ransac_n=3,
                                         num_iterations=1000)
[a, b, c, d] = plane_model
print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")

inlier_cloud = pcd.select_by_index(inliers)
outlier_cloud = pcd.select_by_index(inliers, invert=True)
  • 进一步滤波,滤去离群干扰点(在端面平面内但明显不在圆周上的点)
  • 有两种常用方法:统计滤波和半径滤波(参考博文)
    • 统计滤波:
    #统计滤波
    # nb_neighbors:最近k个点    std_ratio:基于标准差的阈值,越小滤除点越多
    cl,ind = inlier_cloud.remove_statistical_outlier(nb_neighbors=3, std_ratio=1)
    inlier_cloud = inlier_cloud.select_by_index(ind)
    inlier_cloud.paint_uniform_color([1.0, 0, 0])
    outlier_cloud2 = inlier_cloud.select_by_index(ind, invert=True)
    
    • 半径滤波:
    #半径滤波
    # nb_points:基于球体内包含点数量的阈值  radius:半径
    cl,ind = inlier_cloud.remove_radius_outlier(nb_points=3, radius = 1.0)
    inlier_cloud = inlier_cloud.select_by_index(ind)
    
    • 实际效果来看统计滤波效果更好,半径滤波需要设定半径的大小,常常无法在保留内点的同时过滤离群点
  • 之后需要被拟合的点都存在了inlier_cloud中

3.构建学习模型

  • model(points: torch.tensor, cir: torch.tensor, line: torch.tensor)
  • 传入待拟合点,待优化圆心(二维),端面平面方程,使用端面方程去计算圆心的三维坐标,这样可以保证优化过程中圆心始终在端面平面内
def model(points: torch.tensor, cir: torch.tensor, line: torch.tensor):
    '''
    功能:
        根据圆心和待拟合点计算损失
    输入:
        待拟合点,待优化圆心(二维),端面平面方程
    输出:
        圆心,半径,损失
    '''
    line = line.float()
    points = points.float()
    cir = cir.float()

    #计算圆心三维坐标
    cir_z = torch.matmul(cir, line[0:2].T) + line[-1]
    cir_z = cir_z / (1e-10 - line[2])
    cir_z = cir_z.unsqueeze(0)
    cir = torch.cat([cir, cir_z], 0)

    #计算半径矩阵和损失
    #损失一定程度上表示每个点到圆心的距离的差距
    points = points - cir
    points = torch.matmul(points, points.T)
    points = torch.diag(points)
    n_all = points.shape[0]
    r_all = torch.sum(points) / (n_all ** 1)
    e = 0
    for i in range(1,4):
        n = int(n_all / i)
        r = torch.sum(points[:n]) / (n ** 1)
        e += ((r - r_all) ** 2 ) 
    
    return cir, r_all ** 0.5, e

4.训练模型

  • 数据准备
points_2 = np.array(inlier_cloud.points) #* 100
cir =torch.from_numpy(points_2[0][0:2])
cir.requires_grad = True
points_2 = torch.from_numpy(points_2)
line = torch.Tensor(np.array([a, b, c, d]))
  • 模型训练:采用分段学习率,每5000次更新打印一次信息
learning_rate_o = 1e-3
learning_rate_2 = 1e-2
learning_rate_3 = 1
learning_rate_4 = 8
repect_n = 0
repect = 0
epoch = 0
jingdu = 1e-28
epoch_max = 5 * 1e5
print('-------开始学习---------')
while(True):
    epoch += 1
    if cir.grad is not None:
        #梯度归零
        cir.grad.zero_()
    #前向传播
    _, r, l = model(points_2, cir, line)
    #反向传播
    l.backward()
    if cir.grad is None:
        #梯度爆炸就及时退出
        print('++++++++++++')
        print('epoch:', epoch)
        print('a:', cir)
        print('grad:', cir.grad)
        print('r:', r)
        break
    
    #分段学习率
    if l  < 100:
        learning_rate = learning_rate_2
        if l < 45:
            learning_rate = learning_rate_3
            if l < 0.2:
                learning_rate = learning_rate_4
            else:learning_rate = learning_rate_3
        else:learning_rate = learning_rate_2
    else:
        learning_rate = learning_rate_o
    
    
    with torch.no_grad():
        cir -= learning_rate * cir.grad
        if epoch % 5e3 == 0:
            print('------------------')
            print('epoch:',epoch)
            print('a:', cir)
            print('grad:', cir.grad)
            print('rate:',learning_rate)
            print('loss:', l)
            print('r:', r.item())
        
        if l < jingdu:
            print('精度足够,停止学习')
            break
        if epoch > epoch_max:
            break
        
        if l == repect:
            repect_n += 1
        else:
            repect = l
            repect_n = 0
        
        if repect_n > 15:
            print('达到收敛停止学习')
            break
  • 打印最终训练结果:
print('*****************************')
print('epoch:',epoch)
print('a:', cir)
print('grad:', cir.grad)
print('rate:',learning_rate)
print('loss:', l)
print('r:', r.item())


cir, r, l = model(points_2, cir, line)
print('圆心坐标:(', cir, '),半径:', r.item())
  • 效果展示:
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第4张图片

  • 将圆心坐标存入inlier_cloud中:

see = np.row_stack([np.array(inlier_cloud.points), cir.detach().numpy()])
inlier_cloud.points = o3d.utility.Vector3dVector(see)
inlier_cloud.paint_uniform_color([1.0, 0, 0])

5.三维圆与轴线的散点计算

  • 已知圆心、半径、圆所在平面方程,计算该圆的散点和轴线散点:
#空间圆可视化https://www.doc88.com/p-813917521845.html
def get_points_of_circle_3d(line, cir, r):
    '''
    已知圆心、半径、圆所在平面方程,计算该圆的散点和轴线散点
    '''
    A, B, C, D = line
    #取平面上不贡献三个点,组成不共线两个向量
    p1 = np.array([0, 0, -1 * D / C])
    p2 = np.array([1, 0, (-1 * D - A) / C])
    p3 = np.array([0, 1, (-1 * D - B) / C])
    u1 = p1 - p2
    u2 = p1 - p3
    #法向量
    n = np.cross(u1, u2)
    n_cir = [cir + n * x  for x in np.arange(-0.1, 0.1, 0.001)]
    #print(n)
    #圆平面建立坐标系
    v = np.cross(u1, n)
    #转为单位向量
    u = u1 / (np.dot(u1, u1.T) ** 0.5)
    v = v / (np.dot(v, v.T) ** 0.5)
    #根据参数方程生成圆的散点
    import math
    p_cir = [cir + u * r * math.cos(x) + v * r * math.sin(x) for x in np.arange(0, 2*3.15 ,0.05)]
    return np.array(p_cir), np.array(n_cir)

6.可视化绘制与新点云保存

  • 计算结果与原始点云叠加显示:
p_cir, n_cir = get_points_of_circle_3d(line.detach().numpy(), cir.detach().numpy(), r.detach().numpy())
see = np.row_stack([cir.detach().numpy(), p_cir, n_cir])
cir_cloud = o3d.geometry.PointCloud()
cir_cloud.points = o3d.utility.Vector3dVector(see)
cir_cloud.paint_uniform_color([0, 1.0, 0])
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, outlier_cloud, cir_cloud])
  • 新建点云保存结果:
new_pcd = o3d.geometry.PointCloud()
new_pcd.points = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.points),
                                                                                            np.array(outlier_cloud.points),
                                                                                            np.array(outlier_cloud2.points),
                                                                                            np.array(cir_cloud.points)]))
new_pcd.colors = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.colors),
                                                                                        np.array(outlier_cloud.colors),
                                                                                        np.array(outlier_cloud2.colors),
                                                                                        np.array(cir_cloud.colors)]))
o3d.io.write_point_cloud(file_before + file + '/new.ply', new_pcd)

7.最终效果

  • 绿色为计算拟合出来的散点圆弧和轴线
  • 红色内用来拟合的内点
  • 黑色为过滤出去的外点(离群点)
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第5张图片

8.完整代码

import open3d as o3d
import numpy as np
from numpy.linalg import det
import random
import torch

def model(points: torch.tensor, cir: torch.tensor, line: torch.tensor):
    '''
    功能:
        根据圆心和待拟合点计算损失
    输入:
        待拟合点,待优化圆心(二维),端面平面方程
    输出:
        圆心,半径,损失
    '''
    line = line.float()
    points = points.float()
    cir = cir.float()

    #计算圆心三维坐标
    cir_z = torch.matmul(cir, line[0:2].T) + line[-1]
    cir_z = cir_z / (1e-10 - line[2])
    cir_z = cir_z.unsqueeze(0)
    cir = torch.cat([cir, cir_z], 0)

    #计算半径矩阵和损失
    #损失一定程度上表示每个点到圆心的距离的差距
    points = points - cir
    points = torch.matmul(points, points.T)
    points = torch.diag(points)
    n_all = points.shape[0]
    r_all = torch.sum(points) / (n_all ** 1)
    e = 0
    for i in range(1,4):
        n = int(n_all / i)
        r = torch.sum(points[:n]) / (n ** 1)
        e += ((r - r_all) ** 2 ) 
    
    return cir, r_all ** 0.5, e

file = '3'
file_before = 'duanmian/'
pcd = o3d.io.read_point_cloud(file_before + file + '/point_cloud_00000.ply')

#pcd = pcd.voxel_down_sample(voxel_size=5e-3)
points = np.array(pcd.points)
colors = np.zeros(np.array(pcd.points).shape[0])
pcd.colors = o3d.utility.Vector3dVector(np.zeros(np.array(pcd.colors).shape))
#o3d.visualization.draw_geometries([pcd])
pcd = pcd.uniform_down_sample(every_k_points = 20)
#o3d.visualization.draw_geometries([pcd])

o3d.io.write_point_cloud(file_before + file + '/old.ply', pcd)

plane_model, inliers = pcd.segment_plane(distance_threshold=3 * 1e-3,
                                         ransac_n=3,
                                         num_iterations=1000)
[a, b, c, d] = plane_model
print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")

inlier_cloud = pcd.select_by_index(inliers)
outlier_cloud = pcd.select_by_index(inliers, invert=True)

print('------开始滤波------')
#参考https://blog.csdn.net/skycol/article/details/127429843
#统计滤波
# nb_neighbors:最近k个点    std_ratio:基于标准差的阈值,越小滤除点越多
cl,ind = inlier_cloud.remove_statistical_outlier(nb_neighbors=3, std_ratio=1)
inlier_cloud = inlier_cloud.select_by_index(ind)
inlier_cloud.paint_uniform_color([1.0, 0, 0])
outlier_cloud2 = inlier_cloud.select_by_index(ind, invert=True)
#半径滤波
# nb_points:基于球体内包含点数量的阈值  radius:半径
#cl,ind = inlier_cloud.remove_radius_outlier(nb_points=3, radius = 1.0)
#inlier_cloud = inlier_cloud.select_by_index(ind)

# o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, outlier_cloud2])

points_2 = np.array(inlier_cloud.points) #* 100
cir =torch.from_numpy(points_2[0][0:2])#选取第一个点作为初始化圆心
cir.requires_grad = True
points_2 = torch.from_numpy(points_2)
line = torch.Tensor(np.array([a, b, c, d]))

learning_rate_o = 1e-3
learning_rate_2 = 1e-2
learning_rate_3 = 1
learning_rate_4 = 8
repect_n = 0
repect = 0
epoch = 0
jingdu = 1e-28
epoch_max = 5 * 1e5
print('-------开始学习---------')
while(True):
    epoch += 1
    if cir.grad is not None:
        #梯度归零
        cir.grad.zero_()
    #前向传播
    _, r, l = model(points_2, cir, line)
    #反向传播
    l.backward()
    if cir.grad is None:
        #梯度爆炸就及时退出
        print('++++++++++++')
        print('epoch:', epoch)
        print('a:', cir)
        print('grad:', cir.grad)
        print('r:', r)
        break
    
    #分段学习率
    if l  < 100:
        learning_rate = learning_rate_2
        if l < 45:
            learning_rate = learning_rate_3
            if l < 0.2:
                learning_rate = learning_rate_4
            else:learning_rate = learning_rate_3
        else:learning_rate = learning_rate_2
    else:
        learning_rate = learning_rate_o
    
    
    with torch.no_grad():
        cir -= learning_rate * cir.grad
        if epoch % 5e3 == 0:
            print('------------------')
            print('epoch:',epoch)
            print('a:', cir)
            print('grad:', cir.grad)
            print('rate:',learning_rate)
            print('loss:', l)
            print('r:', r.item())
        
        if l < jingdu:
            print('精度足够,停止学习')
            break
        if epoch > epoch_max:
            break
        
        if l == repect:
            repect_n += 1
        else:
            repect = l
            repect_n = 0
        
        if repect_n > 15:
            print('达到收敛停止学习')
            break

print('*****************************')
print('epoch:',epoch)
print('a:', cir)
print('grad:', cir.grad)
print('rate:',learning_rate)
print('loss:', l)
print('r:', r.item())


cir, r, l = model(points_2, cir, line)
print('圆心坐标:(', cir, '),半径:', r.item())
see = np.row_stack([np.array(inlier_cloud.points), cir.detach().numpy()])
inlier_cloud.points = o3d.utility.Vector3dVector(see)
inlier_cloud.paint_uniform_color([1.0, 0, 0])
#o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud])

#空间圆可视化https://www.doc88.com/p-813917521845.html
def get_points_of_circle_3d(line, cir, r):
    '''
    已知圆心、半径、圆所在平面方程,计算该圆的散点和轴线散点
    '''
    A, B, C, D = line
    #取平面上不贡献三个点,组成不共线两个向量
    p1 = np.array([0, 0, -1 * D / C])
    p2 = np.array([1, 0, (-1 * D - A) / C])
    p3 = np.array([0, 1, (-1 * D - B) / C])
    u1 = p1 - p2
    u2 = p1 - p3
    #法向量
    n = np.cross(u1, u2)
    n_cir = [cir + n * x  for x in np.arange(-0.1, 0.1, 0.001)]
    #print(n)
    #圆平面建立坐标系
    v = np.cross(u1, n)
    #转为单位向量
    u = u1 / (np.dot(u1, u1.T) ** 0.5)
    v = v / (np.dot(v, v.T) ** 0.5)
    #根据参数方程生成圆的散点
    import math
    p_cir = [cir + u * r * math.cos(x) + v * r * math.sin(x) for x in np.arange(0, 2*3.15 ,0.05)]
    return np.array(p_cir), np.array(n_cir)

p_cir, n_cir = get_points_of_circle_3d(line.detach().numpy(), cir.detach().numpy(), r.detach().numpy())
see = np.row_stack([cir.detach().numpy(), p_cir, n_cir])
cir_cloud = o3d.geometry.PointCloud()
cir_cloud.points = o3d.utility.Vector3dVector(see)
cir_cloud.paint_uniform_color([0, 1.0, 0])
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, outlier_cloud, cir_cloud])

new_pcd = o3d.geometry.PointCloud()
new_pcd.points = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.points),
                                                                                            np.array(outlier_cloud.points),
                                                                                            np.array(outlier_cloud2.points),
                                                                                            np.array(cir_cloud.points)]))
new_pcd.colors = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.colors),
                                                                                        np.array(outlier_cloud.colors),
                                                                                        np.array(outlier_cloud2.colors),
                                                                                        np.array(cir_cloud.colors)]))
o3d.io.write_point_cloud(file_before + file + '/new.ply', new_pcd)

9.打包发布exe可执行文件

  • 为方便执行,更改目录结构,将要处理的点云路径放在config/config.txt里面
  • 将打印重定向输出到log.txt
  • 最终代码如下:
import open3d as o3d
import numpy as np
from numpy.linalg import det
import random
import torch
import sys

def points_3_to_2(points_3, flag):
    #投影公式参考https://blog.csdn.net/weixin_39849839/article/details/108313284
    A = flag[0]
    B = flag[1]
    C = flag[2]
    D = flag[3]
    change = [[B ** 2 + C ** 2, A ** 2 + C ** 2, A ** 2 + B **2],
                        [-1 * A * B, -1 * B * A, -1 * A * C],
                        [-1 * A * C, -1 * B * C, -1 * C * B],
                        [-1 * A * D, -1 * B * D, -1 * C * D ]]
    change = np.array(change)
    change /= (A ** 2 + B ** 2 + C ** 2)
    points_3 = np.column_stack([points_3, np.ones(points_3.shape[0])])
    #print(points_3)
    points_2 = np.dot(points_3, change)
    return points_2

def model(points: torch.tensor, cir: torch.tensor, line: torch.tensor):
    '''
    功能:

    输入:

    
    '''
    line = line.float()
    points = points.float()
    cir = cir.float()

    cir_z = torch.matmul(cir, line[0:2].T) + line[-1]
    cir_z = cir_z / (1e-10 - line[2])
    cir_z = cir_z.unsqueeze(0)
    cir = torch.cat([cir, cir_z], 0)

    points = points - cir
    points = torch.matmul(points, points.T)
    points = torch.diag(points)
    n_all = points.shape[0]
    r_all = torch.sum(points) / (n_all ** 1)
    e = 0
    for i in range(1,4):
        n = int(n_all / i)
        r = torch.sum(points[:n]) / (n ** 1)
        e += ((r - r_all) ** 2 ) 
    
    return cir, r_all ** 0.5, e

with open("config/config.txt","r",encoding="utf-8") as f:
 file_path = f.readline().split(":")[1]
 ply_name = file_path.split("/")[-1]
 file_path = '/'.join(file_path.split("/")[:-1])

log = open(file_path + "/log.txt",'w',encoding="utf-8")
sys.stdout = log

print("file_path:",file_path)
print("ply_name:", ply_name)

pcd = o3d.io.read_point_cloud(file_path + '/' + ply_name)

#pcd = pcd.voxel_down_sample(voxel_size=5e-3)
points = np.array(pcd.points)
colors = np.zeros(np.array(pcd.points).shape[0])
pcd.colors = o3d.utility.Vector3dVector(np.zeros(np.array(pcd.colors).shape))
#o3d.visualization.draw_geometries([pcd])
pcd = pcd.uniform_down_sample(every_k_points = 20)
#o3d.visualization.draw_geometries([pcd])

o3d.io.write_point_cloud(file_path + '/old.ply', pcd)

plane_model, inliers = pcd.segment_plane(distance_threshold=3 * 1e-3,
                                         ransac_n=3,
                                         num_iterations=1000)
[a, b, c, d] = plane_model
print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")

inlier_cloud = pcd.select_by_index(inliers)

print('------开始滤波------')
#参考https://blog.csdn.net/skycol/article/details/127429843
#统计滤波
# nb_neighbors:最近k个点    std_ratio:基于标准差的阈值,越小滤除点越多
cl,ind = inlier_cloud.remove_statistical_outlier(nb_neighbors=3, std_ratio=1)
inlier_cloud = inlier_cloud.select_by_index(ind)
inlier_cloud.paint_uniform_color([1.0, 0, 0])
outlier_cloud2 = inlier_cloud.select_by_index(ind, invert=True)
#半径滤波
# nb_points:基于球体内包含点数量的阈值  radius:半径
#cl,ind = inlier_cloud.remove_radius_outlier(nb_points=3, radius = 1.0)
#inlier_cloud = inlier_cloud.select_by_index(ind)
outlier_cloud = pcd.select_by_index(inliers, invert=True)
# o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, outlier_cloud2])

points_2 = np.array(inlier_cloud.points) #* 100
cir =torch.from_numpy(points_2[0][0:2])
cir.requires_grad = True
points_2 = torch.from_numpy(points_2)
line = torch.Tensor(np.array([a, b, c, d]))

learning_rate_o = 1e-3
learning_rate_2 = 1e-2
learning_rate_3 = 1
learning_rate_4 = 8
repect_n = 0
repect = 0
epoch = 0
jingdu = 1e-28
epoch_max = 5 * 1e5
print('-------开始学习---------')
while(True):
    epoch += 1
    if cir.grad is not None:
        cir.grad.zero_()
    _, r, l = model(points_2, cir, line)
    l.backward()
    if cir.grad is None:
        print('++++++++++++')
        print('epoch:', epoch)
        print('a:', cir)
        print('grad:', cir.grad)
        print('r:', r)
        #print('rate:',learning_rate)
        #print('loss:', l)
        break
    #print(a.grad)
    #learning_rate = 0.1 ** ((len(str(cir.grad[0])) / 2))
    
    if l  < 100:
        learning_rate = learning_rate_2
        if l < 45:
            learning_rate = learning_rate_3
            if l < 0.2:
                learning_rate = learning_rate_4
            else:learning_rate = learning_rate_3
        else:learning_rate = learning_rate_2
    else:
        learning_rate = learning_rate_o
    
    
    with torch.no_grad():
        """
        if torch.isnan(a.grad).any():
            print('------------------')
            print('epoch:',epoch)
            print('a:', a)
            print('grad:', a.grad)
            print('rate:',learning_rate)
            print('loss:', l)
            break
        """
        cir -= learning_rate * cir.grad
        #print(a - learning_rate * a.grad)
        if epoch % 5e3 == 0:
            print('------------------')
            print('epoch:',epoch)
            print('a:', cir)
            print('grad:', cir.grad)
            print('rate:',learning_rate)
            print('loss:', l)
            print('r:', r.item())
        
        if l < jingdu:
            print('精度足够,停止学习')
            break
        if epoch > epoch_max:
            break
        
        if l == repect:
            repect_n += 1
        else:
            repect = l
            repect_n = 0
        
        if repect_n > 15:
            print('达到收敛停止学习')
            break

print('*****************************')
print('epoch:',epoch)
print('a:', cir)
print('grad:', cir.grad)
print('rate:',learning_rate)
print('loss:', l)
print('r:', r.item())


cir, r, l = model(points_2, cir, line)
print('圆心坐标:(', cir, '),半径:', r.item())
see = np.row_stack([np.array(inlier_cloud.points), cir.detach().numpy()])
inlier_cloud.points = o3d.utility.Vector3dVector(see)
inlier_cloud.paint_uniform_color([1.0, 0, 0])
#o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud])

#空间圆可视化https://www.doc88.com/p-813917521845.html
def get_points_of_circle_3d(line, cir, r):
    '''
    
    '''
    A, B, C, D = line
    #取平面上不贡献三个点,组成不共线两个向量
    p1 = np.array([0, 0, -1 * D / C])
    p2 = np.array([1, 0, (-1 * D - A) / C])
    p3 = np.array([0, 1, (-1 * D - B) / C])
    u1 = p1 - p2
    u2 = p1 - p3
    #法向量
    n = np.cross(u1, u2)
    n_cir = [cir + n * x  for x in np.arange(-0.1, 0.1, 0.001)]
    #print(n)
    #圆平面建立坐标系
    v = np.cross(u1, n)
    #转为单位向量
    u = u1 / (np.dot(u1, u1.T) ** 0.5)
    v = v / (np.dot(v, v.T) ** 0.5)
    #根据参数方程生成圆的散点
    import math
    p_cir = [cir + u * r * math.cos(x) + v * r * math.sin(x) for x in np.arange(0, 2*3.15 ,0.05)]
    return np.array(p_cir), np.array(n_cir)

p_cir, n_cir = get_points_of_circle_3d(line.detach().numpy(), cir.detach().numpy(), r.detach().numpy())
see = np.row_stack([cir.detach().numpy(), p_cir, n_cir])
cir_cloud = o3d.geometry.PointCloud()
cir_cloud.points = o3d.utility.Vector3dVector(see)
cir_cloud.paint_uniform_color([0, 1.0, 0])
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud, outlier_cloud, cir_cloud])

new_pcd = o3d.geometry.PointCloud()
new_pcd.points = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.points),
                                                                                            np.array(outlier_cloud.points),
                                                                                            np.array(outlier_cloud2.points),
                                                                                            np.array(cir_cloud.points)]))
new_pcd.colors = o3d.utility.Vector3dVector(np.row_stack([np.array(inlier_cloud.colors),
                                                                                        np.array(outlier_cloud.colors),
                                                                                        np.array(outlier_cloud2.colors),
                                                                                        np.array(cir_cloud.colors)]))
o3d.io.write_point_cloud(file_path + '/new.ply', new_pcd)

log.close()
  • exe文件小图片格式需要为.icon,使用该网站免费在线转换图片格式为icon,转换后的图标下载地址
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第6张图片
  • 安装pip install pyinstaller
  • 生产exe命令(需要先cd到FindCircle.py所在文件夹):
Pyinstaller -F -w -i duanmian/FindCircle.ico FindCircle.py

三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第7张图片

  • 生产的exe文件在dist文件夹下,将其移动到py文件所在位置,双击执行即可,在待处理点云所在文件夹会生成log.txt文件,记录打印的日志:
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第8张图片
    三维点云机器学习检测定位圆心,三维圆检测,拟合轴线(基于open3d和python)_第9张图片

你可能感兴趣的:(open3d,计算机视觉,机器学习,三维视觉,三维圆检测,三维圆定位,轴线拟合)