辛普森悖论

定义:辛普森悖论为英国统计学家E.H.辛普森于1951年提出的悖论,即在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论。

措施:斟酌个别分组的权重,以一定的系数去消除以分组资料基数差异所造成的影响,同时必需了解该情境是否存在其他潜在要因而综合考虑。

案例:AB实验中,大流量试验比小流量试验可以消除很多噪音和不确定性,但是反而可能受到辛普森悖论的影响。举个例子说明:如果只是拿100人做试验,50人一组随机分配,很可能是28男22女对22男28女,每个性别只是相差6个人而已。如果是拿10000人做试验,5000人一组随机分配,很可能是2590男2410女对2410男2590女,每个性别就差了180人,而这180人造成的误差影响就可能很大。

影响:在试验实施上,对试验结果我们要积极的进行多维度的细分分析,除了总体对比,也看一看对细分受众群体的试验结果,不要以偏盖全,也不要以全盖偏。一个试验版本提升了总体活跃度,但是可能降低了年轻用户的活跃度,那么这个试验版本是不是更好呢?一个试验版本提升总营收0.1%,似乎不起眼,但是可能上海地区的年轻女性 iPhone 用户的购买率提升了20%,这个试验经验就很有价值了。

你可能感兴趣的:(辛普森悖论)