在Kubernetes网络中存在两种IP(Pod IP和Service Cluster IP),Pod IP 地址是实际存在于某个网卡(可以是虚拟设备)上的,Service Cluster IP它是一个虚拟IP,是由kube-proxy使用Iptables规则重新定向到其本地端口,再均衡到后端Pod的。下面讲讲Kubernetes Pod网络设计模型:
1、基本原则:
每个Pod都拥有一个独立的IP地址(IPper Pod),而且假定所有的pod都在一个可以直接连通的、扁平的网络空间中。
2、设计原因:
用户不需要额外考虑如何建立Pod之间的连接,也不需要考虑将容器端口映射到主机端口等问题。
3、网络要求:
所有的容器都可以在不用NAT的方式下同别的容器通讯;所有节点都可在不用NAT的方式下同所有容器通讯;容器的地址和别人看到的地址是同一个地址。
1、网络的命名空间:Linux在网络栈中引入网络命名空间,将独立的网络协议栈隔离到不同的命令空间中,彼此间无法通信;docker利用这一特性,实现不容器间的网络隔离。
2、Veth设备对:Veth设备对的引入是为了实现在不同网络命名空间的通信。
3、Iptables/Netfilter:Netfilter负责在内核中执行各种挂接的规则(过滤、修改、丢弃等),运行在内核 模式中;Iptables模式是在用户模式下运行的进程,负责协助维护内核中Netfilter的各种规则表;通过二者的配合来实现整个Linux网络协议栈中灵活的数据包处理机制。
4、网桥:网桥是一个二层网络设备,通过网桥可以将linux支持的不同的端口连接起来,并实现类似交换机那样的多对多的通信。
5、路由:Linux系统包含一个完整的路由功能,当IP层在处理数据发送或转发的时候,会使用路由表来决定发往哪里。
1、单机网络模式:Bridge 、Host、Container、None,这里具体就不赘述了。
2、多机网络模式:一类是 Docker 在 1.9 版本中引入Libnetwork项目,对跨节点网络的原生支持;一类是通过插件(plugin)方式引入的第三方实现方案,比如 Flannel,Calico 等等。
1、容器间通信:
同一个Pod的容器共享同一个网络命名空间,它们之间的访问可以用localhost地址 + 容器端口就可以访问。
2、同一Node中Pod间通信:
同一Node中Pod的默认路由都是docker0的地址,由于它们关联在同一个docker0网桥上,地址网段相同,所有它们之间应当是能直接通信的。
3、不同Node中Pod间通信:
不同Node中Pod间通信要满足2个条件: Pod的IP不能冲突; 将Pod的IP和所在的Node的IP关联起来,通过这个关联让Pod可以互相访问。
4、Service介绍:
Service是一组Pod的服务抽象,相当于一组Pod的LB,负责将请求分发给对应的
Pod;Service会为这个LB提供一个IP,一般称为ClusterIP。
5、Kube-proxy介绍:
Kube-proxy是一个简单的网络代理和负载均衡器,它的作用主要是负责Service的实现,具体来说,就是实现了内部从Pod到Service和外部的从NodePort向Service的访问。
实现方式:
下面是iptables模式下Kube-proxy的实现方式:
6、Kube-dns介绍
Kube-dns用来为kubernetes service分配子域名,在集群中可以通过名称访问service;通常kube-dns会为service赋予一个名为“service名称
.namespace.svc.cluster.local”的A记录,用来解析service的clusterip。
Kube-dns组件:
Kubedns
Dnsmasq
Exechealthz
1、技术术语:
IPAM:IP地址管理;这个IP地址管理并不是容器所特有的,传统的网络比如说DHCP其实也是一种IPAM,到了容器时代我们谈IPAM,主流的两种方法: 基于CIDR的IP地址段分配地或者精确为每一个容器分配IP。但总之一旦形成一个容器主机集群之后,上面的容器都要给它分配一个全局唯一的IP地址,这就涉及到IPAM的话题。
Overlay:在现有二层或三层网络之上再构建起来一个独立的网络,这个网络通常会有自己独立的IP地址空间、交换或者路由的实现。
IPSesc:一个点对点的一个加密通信协议,一般会用到Overlay网络的数据通道里。
vxLAN:由VMware、Cisco、RedHat等联合提出的这么一个解决方案,这个解决方案最主要是解决VLAN支持虚拟网络数量(4096)过少的问题。因为在公有云上每一个租户都有不同的VPC,4096明显不够用。就有了vxLAN,它可以支持1600万个虚拟网络,基本上公有云是够用的。
网桥Bridge: 连接两个对等网络之间的网络设备,但在今天的语境里指的是Linux Bridge,就是大名鼎鼎的Docker0这个网桥。
BGP: 主干网自治网络的路由协议,今天有了互联网,互联网由很多小的自治网络构成的,自治网络之间的三层路由是由BGP实现的。
SDN、Openflow: 软件定义网络里面的一个术语,比如说我们经常听到的流表、控制平面,或者转发平面都是Openflow里的术语。
2、容器网络方案:
隧道方案( Overlay Networking )
隧道方案在IaaS层的网络中应用也比较多,大家共识是随着节点规模的增长复杂度会提升,而且出了网络问题跟踪起来比较麻烦,大规模集群情况下这是需要考虑的一个点。
路由方案
路由方案一般是从3层或者2层实现隔离和跨主机容器互通的,出了问题也很容易排查。
3、CNM & CNI阵营:
容器网络发展到现在,形成了两大阵营,就是Docker的CNM和Google、CoreOS、Kuberenetes主导的CNI。首先明确一点,CNM和CNI并不是网络实现,他们是网络规范和网络体系,从研发的角度他们就是一堆接口,你底层是用Flannel也好、用Calico也好,他们并不关心,CNM和CNI关心的是网络管理的问题。
CNM(Docker LibnetworkContainer Network Model):
Docker Libnetwork的优势就是原生,而且和Docker容器生命周期结合紧密;缺点也可以理解为是原生,被Docker“绑架”。
CNI(Container NetworkInterface):
CNI的优势是兼容其他容器技术(e.g. rkt)及上层编排系统(Kubernetes & Mesos),而且社区活跃势头迅猛,Kubernetes加上CoreOS主推;缺点是非Docker原生。
4、Flannel容器网络:
Flannel之所以可以搭建kubernets依赖的底层网络,是因为它可以实现以下两点:
Flannel介绍
5、Calico容器网络:
Calico介绍
性能对比总结:
CalicoBGP 方案最好,不能用 BGP 也可以考虑 Calico ipip tunnel 方案;如果是 Coreos 系又能开 udp offload,flannel 是不错的选择;Docker 原生Overlay还有很多需要改进的地方。
参考地址:https://www.toutiao.com/article/7244557075605602831/?app=news_article×tamp=1686891005&use_new_style=1&req_id=20230616125004128C981B4DDC4B07B52C&group_id=7244557075605602831&wxshare_count=1&tt_from=weixin&utm_source=weixin&utm_medium=toutiao_android&utm_campaign=client_share&share_token=e949b4c3-1ffe-4294-ab75-b2024f77b55b&source=m_redirect