【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)

【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)

文章目录

  • 【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)
    • 1. 介绍
    • 2. 前言
    • 3. 复现代码
      • 3.1 项目框架
      • 3.2 代码文件
        • 3.2.1 main.py
        • 3.2.2 utils.py
        • 3.2.3 train.py
        • 3.2.4 opt.py
        • 3.2.5 GAE.py
        • 3.2.6 view_learner.py
      • 3.3 实验结果
    • 4. 参考

1. 介绍

本文复现的代码为论文----Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)。

属性图聚类是图数据探索的一种基本而又必要的方法。最近在图对比学习方面的努力已经取得了令人印象深刻的聚类性能。然而,作者观察到:

  • 普遍采用的InfoMax操作倾向于捕获冗余信息,限制了下游集群性能。

为此,作者开发了一种新的方法,称为双冗余减少的属性图聚类(AGC-DRR),以减少输入空间和潜在特征空间中的信息冗余。特别地,

  • 为了减少输入空间的冗余,引入了一种对抗性学习机制来自适应地学习冗余的掉边矩阵,以确保比较样本对的多样性。
  • 为了减少潜在空间中的冗余度,作者强制使用交叉增强样本嵌入的相关矩阵来近似一个单位矩阵。
  • 基于此,学习到的网络在区分不同样本的同时,必须对扰动具有鲁棒性。
  • 大量的实验已经证明,AGC-DRR在大多数基准测试上优于最先进的聚类方法。

【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)_第1张图片

2. 前言

  • 任务所用一些数据集,可以参考常用图数据集。
  • 论文的详细讲解见:AGC-DRR解读。

3. 复现代码

3.1 项目框架

【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)_第2张图片
dataset文件夹参考:常用图数据集。

3.2 代码文件

3.2.1 main.py

import opt
import torch
import numpy as np
from GAE import IGAE,IGAE_encoder
from view_learner import ViewLearner
from utils import *
from train import Train_gae
from sklearn.decomposition import PCA
import warnings

'''
    main.py
'''

# 忽略警告,警告不必输出
warnings.filterwarnings('ignore')

setup()

print("use cuda: {}".format(opt.args.cuda))
device = opt.args.device

# 读取图数据集
x, y, adj = load_graph_data(opt.args.name)

# PCA降维
pca1 = PCA(n_components=opt.args.n_components)
x1 = pca1.fit_transform(x)

edge_index1 = np.array(adj.nonzero())
adj = normlize_adj(adj, True)

data = torch.from_numpy(x1).float()
adj = torch.from_numpy(adj).float()
adj = adj.to_dense()

model_gae = IGAE(
        gae_n_enc_1=opt.args.gae_n_enc_1,
        gae_n_enc_2=opt.args.gae_n_enc_2,
        gae_n_enc_3=opt.args.gae_n_enc_3,
        n_input=data.shape[1]
    ).to(device)

view_learner = ViewLearner(
        IGAE_encoder(gae_n_enc_1=opt.args.gae_n_enc_1,
                     gae_n_enc_2=opt.args.gae_n_enc_2,
                     gae_n_enc_3=opt.args.gae_n_enc_3,
                     n_input=data.shape[1]),
    ).to(device)

Train_gae(model_gae, view_learner, data.to(device), adj.to(device), y, edge_index1)

3.2.2 utils.py

import numpy as np
import scipy.sparse as sp
import torch
import random
import opt
import numpy as np
from sklearn import metrics
from munkres import Munkres
import torch.nn.functional as F
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score

'''
    utils.py
'''

# set up--------------------------------------------------------------------------start
def setup():
    setup_seed(np.random.randint(1000))

    if opt.args.name == 'acm':
        print('acm...............')
        opt.args.n_clusters = 3
        opt.args.t = 2
        opt.args.view_lr = 1e-4
        opt.args.lr = 5e-4
        # opt.args.n_input = 100

    elif opt.args.name == 'dblp':
        print('dblp...............')
        opt.args.n_clusters = 4
        opt.args.t = 2
        opt.args.view_lr = 1e-4
        opt.args.lr = 5e-4
        # opt.args.n_input = 50
    
    elif opt.args.name == 'amap':
        print('amap...............')
        opt.args.n_clusters = 8
        opt.args.t = 5
        opt.args.view_lr = 1e-4
        opt.args.lr = 5e-4

    elif opt.args.name == 'cite':
        print('cite...............')
        opt.args.n_clusters = 6
        opt.args.t = 2
        opt.args.view_lr = 1e-3
        opt.args.lr = 1e-4
    
    elif opt.args.name == 'cora':
        print('cora...............')
        opt.args.n_clusters = 7
        opt.args.t = 2
        opt.args.view_lr = 1e-4
        opt.args.lr = 5e-4
    
    elif opt.args.name == 'corafull':
        print('corafull...............')
        opt.args.n_clusters = 70
        opt.args.t = 2
        opt.args.view_lr = 1e-4
        opt.args.lr = 5e-4

    else:
        print("error!")
        exit(0)

    opt.args.device = torch.device(f"cuda:{opt.args.gpu}" if opt.args.cuda else "cpu")

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
# set up-------------------------------------------------------------------------------end


# torch-numpy transform--------------------------------------------------------------start
def numpy_to_torch(a, sparse=False):
    if sparse:
        a = torch.sparse.Tensor(a)
        a = a.to_sparse()
    else:
        a = torch.FloatTensor(a)
    return a

def torch_to_numpy(t):
    return t.numpy()
# torch-numpy transform----------------------------------------------------------------end


def load_graph_data(dataset_name, show_details=False):
    load_path = "dataset/" + dataset_name + "/" + dataset_name
    feat = np.load(load_path+"_feat.npy", allow_pickle=True)
    label = np.load(load_path+"_label.npy", allow_pickle=True)
    adj = np.load(load_path+"_adj.npy", allow_pickle=True)
    if show_details:
        print("-----details of graph dataset------")
        print("dataset name:   ", dataset_name)
        print("feature shape:  ", feat.shape)
        print("label shape:    ", label.shape)
        print("adj shape:      ", adj.shape)
        print("undirected edge num:   ", int(np.nonzero(adj)[0].shape[0]/2))
        print("category num:          ", max(label)-min(label)+1)
        print("category distribution: ")
        for i in range(max(label)+1):
            print("label", i, end=":")
            print(len(label[np.where(label == i)]))
        print("++++++++++++++++++++++++++++++")

    opt.args.n_input = feat.shape[1]

    return feat, label, adj


def new_graph(edge_index, weight, n, device):
    edge_index = edge_index.cpu().numpy()
    indices = torch.from_numpy(
        np.vstack((edge_index[0], edge_index[1])).astype(np.int64)).to(device)
    values = weight
    shape = torch.Size((n,n))
    return torch.sparse.FloatTensor(indices, values, shape)


def adjust_learning_rate(optimizer, epoch):
    lr = 0.001 * (0.1 ** (epoch // 50))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

def parameter(model):
    params = list(model.parameters())
    k = 0
    for i in params:
        l = 1
        for j in i.size():
            l *= j
        k = k + l
    print("sum:" + str(k))
    return str(k)


# load model parameter------------------------------------------------------------------start
def load_pretrain_parameter(model):
    pretrained_dict = torch.load('model_pretrain/{}_pretrain.pkl'.format(opt.args.name), map_location='cpu')
    model_dict = model.state_dict()
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)
    return model

def model_init(model, X, y):
    model = load_pretrain_parameter(model)
    with torch.no_grad():
        Z1, Z2, Z, Q, X_ = model(X)
    acc, nmi, ari, f1, centers = clustering(Z, y)
    return centers
# load model parameter--------------------------------------------------------------------end


# Two methods to add nosie--------------------------------------------------------------start
def gaussian_noised_feature(X):
    """
    add gaussian noise to the attribute matrix X
    Args:
        X: the attribute matrix
    Returns: the noised attribute matrix Y
    """
    N = torch.Tensor(np.random.normal(0, 0.01, X.shape)).to(opt.args.device)
    Y = X + N
    return Y

def gaussian_noised_feature_(X):
    """
    add gaussian noise to the attribute matrix X
    Args:
        X: the attribute matrix
    Returns: the noised attribute matrix Y
    """
    N = torch.Tensor(np.random.normal(1, 0.01, X.shape)).to(opt.args.device)
    Y = X * N
    return Y
# Two methods to add nosie----------------------------------------------------------------end


# Norm something------------------------------------------------------------------------start
def normlize_adj(adj, symmetry = True):
    adj = adj + np.eye(adj.shape[0])
    # calculate degree matrix and it's inverse matrix
    row_sum = adj.sum(1)

    if symmetry:
        d1 = np.diag(np.power(row_sum, -0.5))
        norm_adj = np.matmul(np.matmul(d1, adj), d1) # symmetry normalize: D^{-0.5} A D^{-0.5}
    else:
        d2 = np.diag(np.power(row_sum, -1))
        norm_adj = np.matmul(d2, adj) # non-symmetry normalize: D^{-1} A
    
    return norm_adj

def normalize(mx):
    rowsum = np.array(mx.sum(1))
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    mx = r_mat_inv.dot(mx)
    return mx

def normalize_lap_(adj, self_loop=True, symmetry=False):
    ident = np.eye(adj.shape[0])
    if self_loop:
        adj_tmp = adj + ident
    else:
        adj_tmp = adj

    # calculate degree matrix and it's inverse matrix
    row_sum = adj_tmp.sum(1)
    L = np.diag(row_sum) - adj_tmp

    if symmetry:
        d1 = np.diag(np.power(row_sum, -0.5))
        norm_L = np.matmul(np.matmul(d1, L), d1) # symmetry normalize: D^{-0.5} A D^{-0.5}
    else:
        d2 = np.diag(np.power(row_sum, -1))
        norm_L = np.matmul(d2, L) # non-symmetry normalize: D^{-1} A
    return norm_L

def get_adjs(adj, norm = True):
    ident = 1 * np.eye(adj.shape[0])
    norm_L = normalize_lap_(adj, True, norm)
    reg = [1] * (2)
    adjs = []
    for i in range(len(reg)):
        adjs.append(ident-(reg[i] * norm_L))
    return adjs

def get_laps(adj, norm = True):
    norm_L = normalize_lap_(adj, True, norm)
    laps = []
    t = 2
    for i in range(t):
        laps.append(norm_L)
    return laps
# Norm something------------------------------------------------------------------------end


# Calculating loss---------------------------------------------------------------------start
def target_distribution(Q):
    weight = Q ** 2 / Q.sum(0)
    P = (weight.t() / weight.sum(1)).t()
    return P

def cross_correlation(X, Y):
    return torch.mm(X, Y.t())

def cross_view_loss(X, Y, A):
    S = cross_correlation(X, Y)
    L_cv = (A-S).pow(2).mean()
    return L_cv

def distribution_loss(Q, P):
    loss = F.kl_div(Q.log(), P, reduction='batchmean')
    return loss

def reconstruction_loss(X, X_):
    loss_rec = F.mse_loss(X, X_)
    return loss_rec
# Calculating loss-----------------------------------------------------------------------end


# Clustering and Evaluation-------------------------------------------------------------start
def clustering(Z, y):
    model = KMeans(n_clusters=opt.args.n_clusters, n_init=20)
    cluster_id = model.fit_predict(Z.data.cpu().numpy())
    acc, nmi, ari, f1 = eva(y, cluster_id, show_details=opt.args.show_details)
    return acc, nmi, ari, f1, model.cluster_centers_

def cluster_acc(y_true, y_pred):
    y_true = y_true - np.min(y_true)
    l1 = list(set(y_true))
    num_class1 = len(l1)
    l2 = list(set(y_pred))
    num_class2 = len(l2)
    ind = 0
    if num_class1 != num_class2:
        for i in l1:
            if i in l2:
                pass
            else:
                y_pred[ind] = i
                ind += 1
    l2 = list(set(y_pred))
    numclass2 = len(l2)
    if num_class1 != numclass2:
        print('error')
        return
    cost = np.zeros((num_class1, numclass2), dtype=int)
    for i, c1 in enumerate(l1):
        mps = [i1 for i1, e1 in enumerate(y_true) if e1 == c1]
        for j, c2 in enumerate(l2):
            mps_d = [i1 for i1 in mps if y_pred[i1] == c2]
            cost[i][j] = len(mps_d)
    m = Munkres()
    cost = cost.__neg__().tolist()
    indexes = m.compute(cost)
    new_predict = np.zeros(len(y_pred))
    for i, c in enumerate(l1):
        c2 = l2[indexes[i][1]]
        ai = [ind for ind, elm in enumerate(y_pred) if elm == c2]
        new_predict[ai] = c
    acc = metrics.accuracy_score(y_true, new_predict)
    f1_macro = metrics.f1_score(y_true, new_predict, average='macro')
    return acc, f1_macro

def eva(y_true, y_pred, show_details=False):
    acc, f1 = cluster_acc(y_true, y_pred)
    nmi = nmi_score(y_true, y_pred, average_method='arithmetic')
    ari = ari_score(y_true, y_pred)
    if show_details:
        print(':acc {:.4f}'.format(acc), ', nmi {:.4f}'.format(nmi), ', ari {:.4f}'.format(ari),
              ', f1 {:.4f}'.format(f1))
    return acc, nmi, ari, f1
# Clustering and Evaluation----------------------------------------------------------------end

3.2.3 train.py

import torch
from opt import args
from utils import *
from torch.optim import Adam
import torch.nn.functional as F

'''
    train.py
'''

def Train_gae(model, view_learner, data, adj, label, edge_index):
    acc_reuslt = []
    nmi_result = []
    ari_result = []
    f1_result = []

    view_optimizer = torch.optim.Adam(view_learner.parameters(), lr=args.view_lr)
    optimizer = Adam(model.parameters(), lr=args.lr)
    n = data.shape[0]

    model.eval()
    for epoch in range(args.epoch):
        # ----------------------Training view_learner---------------------
        view_learner.train()
        view_learner.zero_grad()
        z_igae, c = model(data, adj)

        edge_logits = view_learner(data, adj, edge_index)
        batch_aug_edge_weight = torch.sigmoid(edge_logits).squeeze()  # p

        aug_adj= new_graph(torch.tensor(edge_index).to('cuda'),batch_aug_edge_weight,n,'cuda')
        aug_adj = aug_adj.to_dense()
        aug_adj = aug_adj * adj
        aug_adj = aug_adj.cpu().detach().numpy() + np.eye(n)
        aug_adj = torch.from_numpy(normalize(aug_adj)).to(torch.float32).to('cuda')
        aug_z_igae, aug_c = model(data, aug_adj)

        edge_drop_out_prob = 1 - batch_aug_edge_weight
        reg = edge_drop_out_prob.mean()

        view_loss = (args.reg_lambda * reg) + model.calc_loss(c.T, aug_c.T) + model.calc_loss(c, aug_c)

        (-view_loss).backward()
        view_optimizer.step()

        # ----------------------Training model---------------------
        view_learner.eval()
        model.train()
        model.zero_grad()
        z_igae, c = model(data, adj)

        edge_logits = view_learner(data, adj, edge_index)
        batch_aug_edge_weight = torch.sigmoid(edge_logits).squeeze()  # p

        aug_adj = new_graph(torch.tensor(edge_index).to('cuda'), batch_aug_edge_weight, n,'cuda')
        aug_adj = aug_adj.to_dense()
        aug_adj = aug_adj * adj
        aug_adj = aug_adj.cpu().detach().numpy() + np.eye(n)
        aug_adj = torch.from_numpy(normalize(aug_adj)).to(torch.float32).to('cuda')

        aug_z_igae, aug_c = model(data, aug_adj)
        z_mat = torch.matmul(z_igae, aug_z_igae.T)

        model_loss = model.calc_loss(c.T, aug_c.T) + F.mse_loss(z_mat, torch.eye(n).to('cuda')) + model.calc_loss(c, aug_c)
        model_loss.backward()
        optimizer.step()

        model.eval()

        # ---------------------evaluation----------------------------
        print('{} loss: {}'.format(epoch, model_loss))
        z = (c + aug_c)/2
        i = z.argmax(dim=-1)
        acc, nmi, ari, f1 = eva(label, i.data.cpu().numpy(), epoch)
        
        acc_reuslt.append(acc)
        nmi_result.append(nmi)
        ari_result.append(ari)
        f1_result.append(f1)

    return acc_reuslt, nmi_result, ari_result, f1_result

3.2.4 opt.py

import argparse     

'''
          opt.py
'''

parser = argparse.ArgumentParser(description='AGC-DRR', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--name', type=str, default='dblp')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--k', type=int, default=None)
parser.add_argument('--n_clusters', type=int, default=3)
parser.add_argument('--n_z', type=int, default=10)
parser.add_argument('--n_input', type=int, default=100)
parser.add_argument('--gamma_value', type=float, default=1)
parser.add_argument('--data_path', type=str, default='.txt')
parser.add_argument('--label_path', type=str, default='.txt')
parser.add_argument('--save_path', type=str, default='.txt')
parser.add_argument('--cuda', type=bool, default=True)
parser.add_argument('--gpu', type=int, default=0)

parser.add_argument('--n_components', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=1600)
parser.add_argument('--epoch', type=int, default=400)
parser.add_argument('--acc', type=float, default=-1)
parser.add_argument('--shuffle', type=bool, default=True)
parser.add_argument('--gae_n_enc_1', type=int, default=1000)
parser.add_argument('--gae_n_enc_2', type=int, default=500)
parser.add_argument('--gae_n_enc_3', type=int, default=500)
parser.add_argument('--emb_dim', type=int, default=500,help='embedding dimension')
parser.add_argument('--dataset', type=str, default='ogbg-molesol',help='Dataset')
parser.add_argument('--view_lr', type=float, default=1e-4,help='View Learning rate.')
parser.add_argument('--num_gc_layers', type=int, default=5,help='Number of GNN layers before pooling')
parser.add_argument('--pooling_type', type=str, default='standard',help='GNN Pooling Type Standard/Layerwise')
parser.add_argument('--mlp_edge_model_dim', type=int, default=128,help='embedding dimension')
parser.add_argument('--pred_dim', type=int, default=64,help='embedding dimension')
parser.add_argument('--drop_ratio', type=float, default=0.0,help='Dropout Ratio / Probability')
parser.add_argument('--reg_lambda', type=float, default=1, help='View Learner Edge Perturb Regularization Strength')
parser.add_argument('--seed', type=int, default=0)

args = parser.parse_args()

3.2.5 GAE.py

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, Parameter, Dropout
from opt import args

'''
    GAE.py
'''
class GNNLayer(Module):
    def __init__(self, in_features, out_features):
        super(GNNLayer, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.w = Parameter(torch.FloatTensor(out_features, in_features))
        self.act = nn.Tanh()
        torch.nn.init.xavier_uniform_(self.w)

    def forward(self, features, adj, active):
        if active:
          support = self.act(F.linear(features, self.w))  # add bias
        else:
          support = F.linear(features, self.w)  # add bias
        output = torch.mm(adj, support)
        return output


class IGAE_encoder(nn.Module):
    def __init__(self, gae_n_enc_1, gae_n_enc_2, gae_n_enc_3, n_input):
        super(IGAE_encoder, self).__init__()
        self.gnn_1 = GNNLayer(n_input, gae_n_enc_1)
        self.gnn_2 = GNNLayer(gae_n_enc_1, gae_n_enc_2)
        self.gnn_3 = GNNLayer(gae_n_enc_2, gae_n_enc_3)
        self.s = nn.Sigmoid()

    def forward(self, x, adj):
        z = self.gnn_1(x, adj, active=True)
        z = self.gnn_2(z, adj, active=True)
        z_igae = self.gnn_3(z, adj, active=False)

        return z_igae


class Cluster_layer(nn.Module):
    def __init__(self, in_dims, out_dims):
        super(Cluster_layer, self).__init__()
        self.l =  nn.Sequential(nn.Linear(in_dims, out_dims),
                                nn.Softmax())
    def forward(self, h):
        c = self.l(h)
        return  c


class IGAE(nn.Module):
    def __init__(self, gae_n_enc_1, gae_n_enc_2, gae_n_enc_3, n_input):
        super(IGAE, self).__init__()
        self.encoder = IGAE_encoder(
            gae_n_enc_1=gae_n_enc_1,
            gae_n_enc_2=gae_n_enc_2,
            gae_n_enc_3=gae_n_enc_3,
            n_input=n_input,
            )
        self.cluster = Cluster_layer(
            in_dims=gae_n_enc_3,
            out_dims=args.n_clusters,
        )

    def forward(self, x, adj):
        z_igae = self.encoder(x, adj)
        c = self.cluster(z_igae)
        return z_igae, c

    @staticmethod
    def calc_loss(x, x_aug, temperature=0.2, sym=True):
        batch_size = x.shape[0]
        x_abs = x.norm(dim=1)
        x_aug_abs = x_aug.norm(dim=1)

        sim_matrix = torch.einsum('ik,jk->ij', x, x_aug) / torch.einsum('i,j->ij', x_abs, x_aug_abs)

        sim_matrix = torch.exp(sim_matrix / temperature)
        pos_sim = sim_matrix[range(batch_size), range(batch_size)]

        if sym:
            loss_0 = pos_sim / (sim_matrix.sum(dim=0) - pos_sim)
            loss_1 = pos_sim / (sim_matrix.sum(dim=1) - pos_sim)
        #    print(pos_sim, sim_matrix.sum(dim=0))
            loss_0 = - torch.log(loss_0).mean()
            loss_1 = - torch.log(loss_1).mean()
            loss = (loss_0 + loss_1) / 2.0
        else:
            loss = pos_sim / (sim_matrix.sum(dim=1) - pos_sim)
            loss = - torch.log(loss).mean()

        return loss

3.2.6 view_learner.py

import torch
from torch.nn import Sequential, Linear, ReLU
from opt import args

'''
	View_Learner.py
'''
class ViewLearner(torch.nn.Module):
	def __init__(self, encoder, mlp_edge_model_dim=64):
		super(ViewLearner, self).__init__()

		self.encoder = encoder
		self.input_dim = args.emb_dim

		self.mlp_edge_model = Sequential(
			Linear(self.input_dim * 2, 1),
		#	ReLU(),
		#	Linear(mlp_edge_model_dim, 1)
		)
		self.init_emb()

	def init_emb(self):
		for m in self.modules():
			if isinstance(m, Linear):
				torch.nn.init.xavier_uniform_(m.weight.data)
				if m.bias is not None:
					m.bias.data.fill_(0.0)

	def forward(self, x, adj, edge_index):
		node_emb= self.encoder(x, adj)
		src, dst = edge_index[0], edge_index[1]
		emb_src = node_emb[src]
		emb_dst = node_emb[dst]
	#	print(emb_src.shape)
		edge_emb = torch.cat([emb_src, emb_dst], 1)
	#	print(edge_emb.shape)
		edge_logits = self.mlp_edge_model(edge_emb)

		return edge_logits

3.3 实验结果

【代码复现】AGC-DRR__Attributed Graph Clustering with Dual Redundancy Reduction(IJCAI-2022)_第3张图片

4. 参考

【1】https://blog.csdn.net/qq_51392112/article/details/129429108
【2】https://blog.csdn.net/qq_51392112/article/details/129298794

你可能感兴趣的:(聚类(图聚类),代码复现与讲解,机器学习,聚类,python)